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Abstract 

During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, 
especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent 
degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict 
the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation 
company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model 
needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were 
obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D 
rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The 
overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a 
model can be useful in the goal of predicting turbine blade life, given a set of FDR data. 
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Abstract

This paper presents the state equations of the large deflection of a plate in the framework of the classical nonlinear
von Kármán theory with surface stresses taken into account. Unlike the original Gurtin–Murdoch model, the present
model does not include any non-strain terms in the surface stress–strain relation. It is shown that the classical
structure of the potential energy of a deformed nanoplate is preserved with the redefined elastic moduli, which
contain the characteristics of a body and a surface, are introduced. This allows applying to nanoplates the known
solutions and methods for macroplates. So the difference between the compressive buckling of a macroplate and of a
nanoplate is put in evidence, as well as which factors influence this.
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1. Von Kármán plate model with surface stresses

At the beginning of the last century, Gibbs showed that surface tension is present at the boundary between
dissimilar materials. A general model of surface stresses as well as surface elasticity has been developed by
Gurtin and Murdoch in Gurtin and Murdoch (1975, 1978) and can be reduced to the case of a negligibly
thin layer adhering to the underlying material without slipping, and the elastic moduli for both are different.
Somewhat later, an atomistic model in Miller and Shenoy (2000), Shenoy (2005) has supported the idea
that this continuum surface model (the GM model) can predict fundamentally the same elastic response.

Recently, in problems of nanomechanics, the two-dimensional theories of plates and shells with surface
stresses taken into account have been widely used. The surface stresses with the complete GM equation for
large deflections of nanoplates have been investigated by the von Kármán plate theory in Lim and He (2004)
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and then have been made more precise in Huang (2008), with the effect of non-zero normal stress taken
into account in Lu, et al. (2006). However, the original GM surface stress–strain relation includes non-strain
terms (the displacement gradient), and therefore averaging the bulk phase and surface stresses over the
thickness leads to non-symmetric membrane forces. Considering that this theory itself is of an evaluative
nature, a departure from the classical structure of the equations of the plane elastic problem imposes severe
restrictions on their use in studying nonlinear effects, even with the homogeneous static boundary conditions.
So, the authors of Lim and He (2004); Lu, et al. (2006); Huang (2008) have confined themselves to the
study of the one-dimensional case for modeling the bending, buckling, and vibration of an infinite strip.
Thereafter, many other authors have been looking for ways to bring the structure of the resolving equations
with surface stresses taken into account to the classical one.

In two-dimensional models, the widely used approach is the transition to the simplified GM equation
(without the non-strain terms). A discussion of the use of the complete or simplified GM equation was raised
in Mogilevskaya, et al. (2008) and continues to this day. This path looks promising because it preserves the
classical structure of both the resolving equations and the static boundary conditions.

The GM equation without the non-strain term has allowed the wide use of the effective material properties
at the nano- and microscales considering surface effects in the linear theory of plates and shells with transverse
shear Altenbach, et al. (2010) and Eremeev (2016). Also the GM equation without the gradient term was
used in the description of bending and free vibrations on the basis of the first-order shear deformation
theory Ansari, et al. (2014) but without a detailed consideration of the membrane forces. Similarly, by using
a strain-consistent model of surface elasticity, the large deflection of nanoplates with induced residual stress
has been investigated in Ru (2016), but a continuity in-plane condition has not been considered. A simplified
accounting of the surface stresses has been made at the edges of a plate, solving the plane elastic problems in
Tian and Rajapakse (2007); Grekov and Yazovskaya (2014), and at the facial surfaces of a plate (through
the effective flexural stiffness), solving the buckling problem in Bauer, et al. (2014). But this solution has
neglected other effective tangential and flexural properties.

Note the work Ansari and Gholami (2016), in which the authors artificially introduce symmetric mem-
brane forces on the basis of the third-order shear deformation theory of Reddy. With this approach, the
resolving equations preserve the classical structure. However, the static boundary conditions that are spec-
ified for non-symmetric membrane forces, can not be expressed through symmetric ones. Despite such a
serious limitation, this approach allows modeling free and forced oscillations under the homogeneous in-
plane kinematic boundary conditions.

The goal of the present paper is to show how, with the help of the introduced effective moduli, the
classical form of the state equations and the potential energy of a deformed nanoplate with surface stresses
taken into account can be preserved. This opens the possibility of using the well-developed plane theory of
elasticity with the effective in-plane properties for the continuum modeling of nanoplates. The results of the
application of the constructed theory are shown in the example of the study of the compression buckling of
a rectangular nanoplate in comparison with the known classical results for macroplates.

1.1. Equations of state and geometrical relations

Let us consider a homogeneous, linear elastic plate occupying the area {(x1, x2, z) ∈ Ω×[h/2,+h/2]}, Ω ⊂
R2. The Cartesian coordinate system is x1, x2 in-plane and z orthogonal to the midplane of the plate (n
is the unit normal). Following Altenbach, et al. (2010), Ru (2016) etc., on the facial surfaces of the plate
(z = ±h/2) the linearized constitutive equation Gurtin and Murdoch (1975, 1978) can be expressed as

τ± = τ0A+ 2µs
0ε± + λs

0A tr ε±, µs
0 = µs − τ0, λ

s
0 = λs + τ0; (1)

(τ1z, τ2z)± = τ0∇w±. (2)
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