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A B S T R A C T

The CALPHAD framework is built on assumption that all phases have a well-defined free energy over all ac-
cessible composition, temperature and pressure conditions. Unfortunately, it is common for phases to exhibit
mechanical instabilities in at least some range of conditions, thus precluding direct experimental measurements
and hindering computational efforts. A pragmatic solution has often been to extrapolate free energies from stable
region into the unstable regions, but extrapolations from different systems that share a common phase may not
agree and extrapolated free energies can unintentionally lie below the free energy of stable phases.
Computational approaches that aim to directly calculate the free energy of unstable phases offer a promising
avenue to address these issues. Among them, the recently proposed “inflection detection” scheme lies on a strong
theoretical footing. We provide further support for this approach by demonstrating that it yield free energies that
agree very well with the widely used SGTE (Scientific Group Thermodata Europe) data for pure elements. This
finding suggest that it may be possible to get the best of both worlds: obtain a theoretically justified definition of
the free energy of mechanically unstable phases and preserve much of existing empirical standards for the
assignments of such free energies.

1. Introduction

The CALPHAD formalism [1–6] fundamentally relies on the ability
to assign a well-defined free energy to all phases over all accessible
composition ranges and temperature-pressure conditions. Un-
fortunately, mechanical instabilities are common in solid-state systems
[7–10], making it difficult to measure or even calculate suitable free
energies. This problem has prompted a long search for reasonable and
practical definitions of the free energies of mechanically unstable
phases [1,8,11,9,12–14,10] and still hinders thermodynamic database
development [13]. To address this issue, a simple computational
scheme, called “inflection-detection”, was recently proposed [15]. Al-
though this scheme has already been shown to have a sound theoretical
basis, its adoption will be more likely if it yields free energies for me-
chanically phases of the elements that are in agreement with the widely
used SGTE (Scientific Group Thermodata Europe) values [16]. This
paper investigates this important question and confirms that inflection-
detection and SGTE enthalpy values indeed agree very well. This
finding suggests that the inflection-detection concept does capture, in a
formal framework, the essence of what CALPHAD practitioners have
been doing more intuitively for decades.

Having a practical, systematic and formal way of assigning free
energies to mechanically unstable phases solves many of the problems
the CALPHAD community often encounters. The common practice of
extrapolating the free energy of an unstable phase from the free energy

in composition regions where the phase is stable is not without pro-
blems. Extrapolations from different directions in composition-tem-
perature-pressure space may not agree and the extrapolated free energy
of an unstable phase risk inadvertently lying below the free energy of a
truly stable phase.

This paper is organized as follows. We first summarize the theore-
tical basis for the inflection-detection method before presenting an
extensive comparison of the resulting ab initio and SGTE enthalpies. We
then discuss the implications and the interpretation of these findings.

2. Theory

It has recently been proposed [15] that the point of lowest energy at
the onset of mechanical instability provides a logically consistent de-
finition of the energy of a mechanically unstable phase. For complete-
ness and clarity, we summarize the main features of this approach
below (refer to Fig. 1).

In a system of N atoms, let x denote the N3 vector of all atomic
positions (and unit cell parameter, if the system is periodic), let V x( )
denote the potential energy of the system in that state and let κ x( ) be
the minimum curvature at x, that is, the minimum eigenvalue of the
Hessian (the matrix of second derivatives). The set of coordinates x such
that >κ x( ) 0 and ≤κ x( ) 0 correspond to mechanically stable and un-
stable regions, respectively. Given an ideal structure xu in which atoms
are not allowed to relax away from their ideal positions, we define its
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neighborhood η as the largest connected set containing xu over which
the minimum curvature κ x( ) does not change sign. Now, we define the
energy E associated with xu as the minimum of the potential V x( ) over
all x in the neighborhood η. When xu is in a mechanically stable region,
E is just the potential energy V x( )r at the lowest local interior minimum
xr in η, which agrees with the usual notion of energy of a relaxed
structure. When xu is in a mechanically unstable region, =E V x( )r as
well, but now xr must be at the boundary of η, i.e., a point where κ x( ) is
zero. Specifically, xr is the point of minimum energy subject to the
constraint that =κ x( ) 0r . This method is called “inflection detection”
because, for a mechanically unstable structure, if one relaxes the system
from the unrelaxed position xu, one will first detect an inflection point
at xr before finding the local minimum at xo.

At finite temperature T, the relevant thermodynamic quantity is the
free energy and the simple expression for the energy =E V x( )r must be
replaced by a suitable integral over the whole neighborhood η [15]:

∫⎜ ⎟= − ⎛
⎝

− ⎞
⎠∈

F k T V x k T dxln exp( ( )/( ))vib B x η B
(1)

where kB is Boltzmann's constant. It can be verified that this expression
converges to V x( )r as →T 0. This free energy solely includes the con-
tribution of lattice vibrations to the free energy. Configurational and
electronic contributions can be added to it in the usual way [17]. In this

work, configurational terms are absent because we focus on pure ele-
ments and electronic excitation terms are neglected, as they are typi-
cally small.

This definition of the (free) energy offers three desirable properties
[15]. First, it is based on the intuitive geometrical notion of curvature
and, as a result, efficient numerical methods are readily available to
identify either the local minimum or the inflection point [18].

Second, when a system approaches the onset of mechanical in-
stability (e.g. as composition varies) the local minima disappears by
merging with a nearby inflection point, for any physically reasonable
potential surface. This is best understood in a one-dimensional example.
Consider the potential V x α( , ) for different values of some control
variable α (which could be composition, for instance). Fig. 2 show the
behavior of the derivative of this potential with respect to x, denoted
V x α( , )x as α varies. As α approaches the point of instability at some
value α0, the local minimum (where =V x α( , ) 0x ) must approach the
maximum of V x α( , )x (where the second derivative =V x α( , ) 0xx ). But

=V x α( , ) 0xx is nothing but the potential's inflection point. Hence, the
energy is a continuous function of composition, even across an in-
stability and even if it tracks the minimum in the stable region <α α0

and the inflection point in the unstable region >α α0. At finite T, the
transition is even smoother, thanks to the smoothing effect of the in-
tegration over η in Eq. (1).

Finally, the approach has a very convenient practical property. It is
well-known that, for stable phases, one can usually accurately evaluate
Eq. (1) in the harmonic approximation. Remarkably, using inflection-
detection, this remains true for unstable phases, because the inflection
point structure xr is, by construction, only unstable along at most a
small finite number of modes (the number of which is negligible in the
thermodynamic limit of an infinite number of modes). Hence, one can
use a harmonic expansion about xr and simply ignore the unstable
modes (since they occupy a infinitesimal fraction of the Brillouin zone).

3. Numerical experiment

The calculated energies were obtained with the VASP software
[19,20] implementing the Projector-augmented wave method [21,22].

Fig. 1. Inflection-detection method. The potential energy hypersurface V x( ) (as a func-
tion of the state x of the system) defines a natural partitioning of phase space into
neighborhoods η, based on the sign of κ x( ), the local minimum curvature of V x( ) (blue:
negative, yellow: positive). Each neighborhood (stable or not) can be assigned a well-
defined energy by finding the minimum energy within that neighborhood. (a) In the case
of a mechanically stable structure, the initial unrelaxed structure xu simply relaxes to a
local minimum xr . (b) For a mechanically unstable structure, an unconstrained mini-
mization would yield the over-relaxed point xo which is actually the energy of another
structure. The inflection detection method instead finds xr , the minimum energy within η,
which is located at an inflection point where the minimum curvature κ x( ) changes sign.
(For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article).

Fig. 2. Behavior of the potential energy in the vicinity of the onset of mechanical in-
stability. The first derivative of the potential energy of the systemV x α( , )x as a function of
the system's state x is represented, with panels (a), (b) and (c) showing the effect of
varying the value of some external parameter α (such as composition or pressure). This
illustrates that the disappearance of a local minimum x α( )r (in panel (c)) must be ac-
companied by merging of an inflection point x α( )i , a local minimum x α( )r at =α α0.
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