
Contents lists available at ScienceDirect

Calphad

journal homepage: www.elsevier.com/locate/calphad

Evaluation of the genetic algorithm performance for the optimization of the
grand potential in the cluster variation method

Y. Tamerabeta,b, F. Adjadja,b,⁎, T. Bentrciaa

a Faculté des Sciences de la Matière, Département de Physique University of Batna 1, 05000 Batna, Algeria
b Laboratoire d′Etudes Physico-Chimiques des Matériaux (LEPCM), University of Batna 1, 05000 Batna, Algeria

A R T I C L E I N F O

Keywords:
Cluster variation method
FCC structure
Grand potential
Genetic algorithms
Natural iteration method
Newton-Raphson method

A B S T R A C T

Due to the importance of phase diagrams in a wide range of material based industries, additional efforts should
be dedicated to their elaboration techniques. The cluster variation method is a promising technique to model the
entropy within different plane lattices and is recognized by the materials physics community as a powerful
modeling framework. Motivated by the efficiency of genetic algorithms in solving numerous types of optimi-
zation problems, our aim in this work is to investigate their performance in minimizing the grand potential in the
context of the cluster variation method. A comparison is conducted with respect to numerical iterative techni-
ques namely the Newton-Raphson and natural iteration methods, where many performance criteria are com-
puted and compared. The obtained results allow the ranking of the considered approaches according to their
performance measures and suggest a more profound investigation of metaheuristics particularly for complicated
cluster structures in the future.

1. Introduction

The tremendous development of fabrication processes has re-
cognized nowadays a wide deployment of various materials. Such si-
tuation has motivated the boost of methodologies for the elaboration of
phase diagrams associated to these materials, which allows later a deep
understanding of the behavior in addition to different properties of the
considered alloy [1–3]. The cluster variation method is a very efficient
tool used not only in the computation procedure of alloy phase dia-
grams but also in many applications of materials science in connection
to phase transitions. In fact, such method can be used with a satisfac-
tory accuracy to calculate phase equilibrium configurations in solid
solutions characterized by the nature of the involved phases, which
varies only in the permutation of atoms and clusters at the level of the
lattices sites [4–7].

The cluster variation method has been proposed initially by Kikuchi
in a series of pioneering works as an approximate approach to model
order-disorder phenomena by providing analytical formulations for the
configuration entropy, internal and free energies of the system as a
function of the cluster probability variables [8–11]. The choice of the
basic cluster is generally guided by the support of maximum number of
interactions, where the configuration phase equilibrium is established
by the variation of the cluster probabilities (variation principle). The
cluster variation method has shown to admit several previous models as

special cases. Furthermore, this framework has been accredited due to
its success in predicting the behavior and phase diagrams of numerous
alloys [12–14]. In order to tackle the computation burdens, Kikuchi has
introduced an effective algorithm known as natural iteration method to
minimize the grand potential in terms of the cluster probabilities in the
context of the cluster variation method [15,16]. The convergence of the
natural iteration method has been proved by imposing a sufficient
condition on the expansion factors of the cluster entropy, which is
verified for a wide range of cluster geometries [17]. Another alternative
to remedy the same problem has been proposed using the Newton-
Raphson iterative method to solve the minimization problem with re-
spect to the independent variables given by the correlation functions
[18–20]. By focusing on both techniques, it is worth mentioning that
the natural iteration method in almost all cases converges to a solution
independently of the initial conditions except for some lattices for
which the convergence rate is slow at the level of certain points. For
example, the iterations number needed by the natural iteration method
for convergence tends to infinity at the second-order phase transition
point. Moreover, at the vicinity of a tricritical point, the natural itera-
tion method convergence is very slow due to the small variation of
energy between ordered and disordered phases. It should be mentioned
that such convergence behavior of the method may be aggravated when
large clusters or low temperatures are considered during the calculation
of the cluster variation method [21–23]. Nevertheless, the initial
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solutions for the Newton-Raphson method are of crucial importance
since they have an impact on the quality of the obtained solutions,
especially with the existence of local optima leading hence to the lim-
itation of the technique performance [24].

Nature inspired metaheuristics have emerged in the last decades as
a successful contender to the existing conventional techniques built
upon the concept of the gradient of a function or its higher derivatives
such as the case of the iterative approaches [25]. Genetic algorithms
belong to such class of frameworks and have approved their efficiency
in dealing with a large number of sophisticated continuous and discreet
optimization problems. The genetic algorithm is a population based
technique, where a set of solutions is created using selection, crossover
and mutation operators in analogy to the mechanisms of the natural
selection. By evaluating the population individuals during the running
of the algorithm, it is likely to get a solution that is as close as possible
to the global optimal solution [26].

From a computational complexity viewpoint, the Newton-Raphson
has a quadratic rate of convergence and it is very fast if the initial so-
lution is not so far of the root. However, some drawbacks can arise such
as oscillation or generation of negative values for the probability vari-
ables. The natural iteration method insures the convergence of the
iteration procedure independently of the initial solution. However, this
method is much slower than the Newton-Raphson technique and
sometimes the converged state may not be the absolutely stable con-
figuration since in general there are many local minima [27]. Because
the genetic algorithm behavior depends on some stochastic operators, it
is very difficult to provide compact formulas for time complexity. Only
few case studies have been treated in literature where simplifying hy-
potheses are assumed [28–30].

Our objective in this work is to investigate the capacity of genetic
algorithms in the optimization of the grand potential in terms of the
correlation functions, which permits later the determination of the mole
fractions of different elements in the binary alloy. The motivation be-
hind the choice of such algorithm resides in its gradient free nature in
comparison to other conventional iterative techniques like the well-
known Newton-Raphson method. Therefore, there is a low probability
of being trapped in local optima for the genetic algorithms due to their
global exploration of the solution space in addition to the use of several
genetic operators. The assessment of the proposed genetic algorithm
shows that the probability of such approach for being altered by a
convergence drawback is really negligible in comparison to the
Newton-Raphson or the natural iteration methods. Furthermore, the
calculation of statistical measures indicates that both genetic algorithm
and natural iteration method are robust against the selection of the
initial solutions.

2. Grand potential modeling using the cluster variation method

In the cluster variation method, a basic cluster including all atomic
interactions is defined as a geometric shape with a fixed number of
atoms. In the present work, the regular tetrahedron approximation of
the cluster variation method in face centered cubic (fcc) lattice is
considered the basic cluster as indicated by Fig. 1. Throughout the re-
maining of this paper, we adopt the Strukturbericht notation for spe-
cifying the crystal lattice structure.

The main modeling stages of the grand potential using the cluster
variation method are showcased in the following passages. For more
detailed developments, interested readers can refer to [31–34].

For the A1 disordered phase, the weight factor denoted g is given by
the following formula:
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with N represents the number of the lattice positions, Xi denotes the
probability of having an atom i on a lattice point, Yij expresses the

probability of locating the atoms i and j on a pair of adjacent sites, Wijkl
is the probability to get the atoms i, j, k, and l on the tetrahedron
cluster. It should be mentioned that these probabilities are related by
the reduction formulas:
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The configuration entropy in the framework of the cluster variation
formalism is specified by multiplying the Boltzmann constant

= × −k( 1.380664 10 )B
23 with the logarithm of the weight factor:
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Therefore, the configuration entropy associated to the A1disordered
phase is:
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Since a face centered cubic crystal including N lattice points have a
total number of 2N tetrahedra, the internal energy can be expressed in
this case by:
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where α, β, γ and δ reflect the lattice locations, εijkl
αβγδ is the energy per

tetrahedron, which can be written as a function of the pair interactions
εij

αβ as:
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Accordingly, the Helmholtz free energy can be developed as:

= −F U TS (7)

Hence, we deduce the grand potential provided by the relation:

∑= −Ω F μ x*
i

i i
(8)

subject to the condition ∑ =μ( * 0)i i , which relates the effective che-
mical potentials associated to elements i.

3. Minimization of the grand potential

In what follows, we consider the mathematical formulation of the
minimization problem of the grand potential in terms of the correlation

Fig. 1. Illustration of the regular tetrahedron cluster in the face centered cubic
lattice.
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