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A B S T R A C T

A new method is presented to simulate moving interfaces during diffusion-controlled growth under local
equilibrium conditions. The position and compositions of the interface are obtained directly from the equili-
brium state of the subsystem around the moving interface, without iterative calculation between diffusion fluxes
and solute balance conditions. The method is applicable to general multi-component systems, and it ensures the
consistency in compositions and solute balance at the interfaces; Those are ascribed to the presented con-
sideration of subsystem around the interface region in a discretized form. Explicit equations of interface com-
positions and position in discretized variables are also presented for the simplified ternary systems of two-
solution and compound/solution. The validity and usefulness of the method is demonstrated by simulations of
the two important ternary systems; The simulation results illustrate the features of diffusion-controlled growth
with different alloy compositions and diffusivities of solutes in both systems.

1. Introduction

During diffusional phase transformations of alloys, the evolution of
concentration field governs growth kinetics. In moving interface pro-
blems where solute partitioning occurs at the interphase boundary,
certain thermodynamic conditions (e.g., local equilibrium or para-
equilibrium) are usually assumed at the interface, and there also exist
solute balance conditions. Denoting two phases across the interface as S
and L, and interface position as =z R, diffusion equations in each phase
and interphase boundary conditions for n-component systems are
written as
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where subscripts j = 1,2, …, n−1 are for solute elements and n for
solvent element; cj

S e, and cj
L e, are compositions at the interface. Solute

fluxes Jj can be expressed in gradients of either concentration or dif-
fusion potential, i.e.,
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For the moving interface problems, the interface position (or velo-
city) and interface compositions should be found as a part of the so-
lution besides the concentration fields in each phase. In general multi-
component systems, the interface compositions (so called operating tie-
line) are coupled with the solute balance conditions (Eq. (1c)) and
cannot be determined by thermodynamic conditions alone. In conven-
tional simulations (such as in a commercial software DICTRA), iterative
calculations are performed by using trial values of interface velocity
and interface compositions to find the operating tie-line at each time
step [1–4]. Binary systems are exceptional because a priori interface
compositions are uniquely determined by the local equilibrium condi-
tion without the kinetics of diffusion. The consistency of interface
compositions and solute balance conditions is one of main concerns in
numerical simulations of the problems. Some analytic solutions of
idealized situations in (semi)infinite domains are available [5]. How-
ever, practical investigations of actual situations (e.g., variable diffu-
sivities, finite system size, more than three components) usually need
computational simulations.

In this study, a new method is presented to simulate moving inter-
faces with equilibrium partitioning of solutes, i.e., local equilibrium
conditions at the interfaces. In the method, the position and
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compositions of the interface are obtained directly from the equilibrium
state of the subsystem around the moving interface without iterative
calculation between diffusion fluxes and solute balance conditions. The
method is simple and applicable to general multi-component systems.
Because it is based on the conservative nature of diffusion equation and
the thermodynamic equilibrium nature of interface compositions in a
discretized system, the consistency in compositions and solute balance
at the interfaces is evident. Firstly, the discretization scheme for the
interface position is described for binary systems in the next section.
Although a priori values of interface compositions are given in binary
problems, a basic idea for solving general multi-component problems
can be drawn from the physical meaning of the discretized equations.
Then the general case of finding the interface compositions and position
in multi-component systems will be explained. Some useful formula-
tions of simplified ternary systems are also presented to express ana-
lytically the equations of interface compositions and position in dis-
cretized variables. To illustrate the validity and usefulness of the
method, simulations of two important ternary systems are described in
the section of examples, which is followed by some discussion. A uni-
form cell size, constant diffusivities in each phase, and concentration-
gradient-driven fluxes without cross effect are assumed in the following
sections. However, these are adopted just for brief expression of dis-
cretization. Applying non-uniform grid spacing, spherical or cylindrical
geometry, variable diffusivities, and diffusion-potential-gradients-
driven solute fluxes to the present method is straightforward.

2. Moving interface in a binary system

Consider N grid points placed in the center of each control volume
(cell) in a discretized space of system (Fig. 1). A cell that contains the
interface will be denoted by “S/L-cell”. Concentrations of both phases
cS, cL and an additional variable r are assigned to the S/L-cell to re-
present interface compositions and relative interface position (or vo-
lume fraction of S phase) within the cell. r = 0.5 when the interface is
located at the center of the S/L cell. Overall concentration of the S/L-
cell is then given by c = rcS + (1-r)cL. Let the k-th cell (denoted by “k-
cell”) be the S/L-cell at time t, then the global position of the interface is
tracked by R = zk + (r −0.5)dz. The task of numerical computation
here is, with the values of previous time step R(t), cS(t), cL(t), to find the
values of current time step R(t + Δt), cS(t + Δt), cL(t + Δt) that satisfy
the diffusion equations and solute balance conditions. For cS1~k−2(t +
Δt) and cLk+2~N(t + Δt) (S- and L-cells not in contact with the S/L-cell),
a standard discretization scheme of diffusion equation can be used. The
discretization of diffusion equation is based on the control-volume (or
finite volume) formulation [6,7], which will not be repeated here.
However, for the S/L-cell (k-cell) and its two neighbors (k−1)- and (k

+ 1)-cells, a different scheme is applied as explained below.
The discretization of diffusion equation is described in an explicit

time scheme. A priori values of interface compositions (which can be
varied with time in non-isotherm conditions) cS,e(t + Δt) and cL,e(t +
Δt) are given in binary alloys by local equilibrium condition alone. In
the first step, “temporary” values of cSk-1,tmp, ck,tmp, cLk+1,tmp and rtmp in
the k-cell are evaluated using the interface compositions and the dis-
cretized diffusion equations as follows.
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where superscript ‘0’ denotes the value in the previous time step. ck,tmp

in Eqs. (3a) and (3b) represent overall concentration of the k-cell that is
a temporary S/L-cell at the moment. In the second step, depending on
the evaluated value of rtmp, three situations are considered as follows.

(Case I) ≤ <r0 1tmp : the interface is still located within the k-cell at
t + Δt.

When the interface stays within the k-cell during t~(t + Δt), Eq.
(3a)–(3c) ensure the solute balance condition with the updated values
of overall concentration ck,tmp and relative interface position rtmp in the
S/L-cell. Hence, the values of current time step are simply given by

+ = + = + =− − + +c t Δt c c t Δt c c t Δt c( ) , ( ) , ( ) ,k
S

k tmp
S

k k tmp k
L

k tmp
L

1 1, , 1 1,

(4a)

+ =r t Δt r( ) tmp (4b)

(Case II) ≥r 1tmp : the interface moved into (k + 1)-cell.
Considering the status change of k-cell (S-cell at t+ Δt) and (k+ 1)-

cell (S/L-cell at t + Δt), concentrations at t + Δt are given as
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The relative interface position r in Eq. (5a) is for the new S/L-cell,
i.e., (k + 1)-cell, and can be found from the following relation of solute
conservation within the subsystem of “k- and (k + 1)-cells”.
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Substituting Eqs. (3a) and (5a) into the above equation and re-
arranging yields the relative interface position r in (k+ 1)-cell (S/L-cell
at t + Δt) as
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(Case III) <r 0tmp : the interface moved into (k−1)-cell.
In this case, (k−1)-cell becomes the new S/L-cell at t + Δt.

Following the same way as in case II, concentrations of the cells and the
relative interface position r within (k−1)-cell can be obtained as
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The physical meaning of the above discretized equations can be
explained. For example, while deriving Eq. (5b) in case II, we have an
equation,

Fig. 1. Schematic illustration of discretized system around the moving interface (dashed
line). Fluxes of Eq. (3c) are indicated in the S/L-cell and its two neighbor cells.
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