Contents lists available at ScienceDirect

CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry

Rate of change at equilibrium

a Division of Physical Metallurgy, Department of Materials Science and Engineering, The Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden
${ }^{\text {b }}$ Thermo-Calc Software, Norra Stationsgatan 93, SE-113 64 Stockholm, Sweden

ARTICLEINFO

Article history:

Received 24 June 2015
Received in revised form
2 October 2015
Accepted 5 October 2015
Available online 11 November 2015

Keywords:

Thermodynamics
Computational modeling
CALPHAD

Abstract

A general procedure to evaluate derivatives of thermodynamic quantities with respect to equilibrium conditions (external variables, parameters) at equilibrium is outlined. An example calculation is given.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A powerful feature of the Thermo-Calc software [1] is the possibility to obtain analytical derivatives of thermodynamic quantities with respect to equilibrium conditions. It has been possible to evaluate such derivatives for a very long time using the Thermo-Calc equilibrium calculation engine [2], but the method used has never been published.

The present work outlines a general procedure to evaluate such derivatives, i.e. derivatives taken at equilibrium states with respect to parameters representing equilibrium conditions. Or, in other words, the rate of change at equilibrium of thermodynamic properties relative the change of an external parameter. These derivatives are constrained since they are evaluated at equilibrium; the internal variables are interdependent.

The problem is sometimes referred to as optimum sensitivity analysis. Smith and Nissen [3] present in-depth results on this subject matter in their general book on chemical reaction equilibrium analysis and is recommended as further reading. So-bieszczanski-Sobieski and Riley [4] have performed this type of analysis within the field of structural mechanics.

The structure of this paper is as follows. First a general formulation for the optimization problem of finding an equilibrium state is given. Then the general procedure of evaluating derivatives at equilibrium is outlined. Finally, a simple example is given to illustrate the method.

[^0]
2. Calculating thermodynamic equilibria

There are numerous articles and books where methods for calculating thermodynamic equilibria are discussed, see, for example, Lukas et al. [5] and Hillert [6]. Here the method of Lagrange multipliers will be considered. With the Calphad formalism, the internal variables of a system are normally temperature \tilde{T}, pressure \tilde{P}, number of moles formula units of each phase α, n^{α}, and the site fractions $y_{k}^{\alpha s}$ of constituents k on sublattices s in phase α. The tilde (${ }^{\circ}$) signifies that these temperature and pressure variables are internal, as opposed to external, and the reason for this distinction will become clear below. The total Gibbs energy G of a system is given by
$G=\sum_{\alpha} n^{\alpha} G_{m}^{\alpha}\left(\tilde{P}, \tilde{T}, y^{\alpha}\right)$
where G_{m}^{α} is Gibbs energy of phase α per mole formula unit.
The equilibrium state is found by minimizing Eq. (1) subject to "internal" and "external" constraints.

Internal constraints are
$0 \leq y_{k}^{\alpha s} \leq 1$
$\sum_{k} y_{k}^{\alpha S}=1$
$n^{\alpha} \geq 0$
and may also include constraints on charge neutrality. In the following the internal constraints will not be considered; it is assumed that they are satisfied. It will also be assumed that one site
fraction on each sublattice is eliminated so that the constraint given by Eq. (3) does not give rise to internal derivatives.

The external constraints are the equilibrium conditions. The natural external variables of Gibbs energy are P, T and the number of moles of each component N_{i}. In this paper we will only consider equilibrium conditions corresponding to these variables. The external constraint corresponding to mass balance with regards to component i is then formulated as
$N_{i}-\tilde{N}_{i}\left(n^{\alpha}, \ldots, n^{\omega}, y^{\alpha}, \ldots, y^{\omega}\right)=0$
where \tilde{N}_{i} is a function yielding the total number of moles of component i in the system.

The corresponding constraints on temperature and pressure are $P-\tilde{P}=0$ and $T-\tilde{T}=0$, which are trivially satisfied.

In the following internal variables will be denoted with v and external variables with z. The optimization problem of finding the equilibrium state may then be formulated as
minimize $G\left(v_{1}, \ldots, v_{n}\right)$
subject to constraints $g_{i}\left(v_{1}, \ldots, v_{n}, z_{i}\right)=0, \quad i=1, \ldots, m$
In general the number of constraints m is equal to $C+2$ where C is the number of components. When determining a specific equilibrium state the external variables z are held constant. To find the solution, form the Lagrangian
$\mathcal{L}=G+\sum_{i=1}^{m} \lambda_{i} g_{i}$
where the λ_{i} are the multipliers. The equilibrium state is then found by satisfying the system of equations
$\begin{cases}\frac{\partial \mathcal{L}}{\partial v_{j}}=\frac{\partial G}{\partial v_{j}}+\sum_{i=1}^{m} \lambda_{i} \frac{\partial g_{i}}{\partial v_{j}}=0, & j=1, \ldots, n \\ \frac{\partial \mathcal{L}}{\partial \lambda_{i}}=g_{i}=0, & i=1, \ldots, m\end{cases}$

3. Evaluating a derivative with respect to an equilibrium condition

Given an equilibrium found by solving the optimization problem (Eq. (9)) for a given set of z_{i} external variable values, consider
and evaluate how h will change subject to a change in equilibrium condition z_{k}, i.e. evaluate the derivative
$\frac{d h}{d z_{k}}=\sum_{j=1}^{n} \frac{\partial h}{\partial v_{j}} \frac{d v_{j}}{d z_{k}}$
The partial derivatives $\partial h / \partial v_{j}$ are given directly by the expression for h. The interdependence of the v, λ and z variables is found by differentiating the system of equations (Eq. (9)) with respect to z_{k} :
$\sum_{r=1}^{n} \frac{\partial^{2} \mathcal{L}}{\partial v_{j} \partial v_{r}} \frac{d v_{r}}{d z_{k}}+\sum_{s=1}^{m}\left(\frac{\partial^{2} \mathcal{L}}{\partial v_{j} \partial \lambda_{s}} \frac{d \lambda_{s}}{d z_{k}}+\frac{\partial^{2} \mathcal{L}}{\partial v_{j} \partial z_{s}} \frac{d z_{s}}{d z_{k}}\right)=0$,

$$
\begin{equation*}
j=1, \ldots, n \tag{12}
\end{equation*}
$$

$\sum_{r=1}^{n} \frac{\partial^{2} \mathcal{L}}{\partial \lambda_{i} \partial v_{r}} \frac{d v_{r}}{d z_{k}}+\frac{\partial^{2} \mathcal{L}}{\partial \lambda_{i} \partial z_{i}} \frac{d z_{i}}{d z_{k}}=0, \quad i=1, \ldots, m$
where it has been utilised that $\partial \mathcal{L} / \partial v_{j}=f(v, z, \lambda)$ and $\partial \mathcal{L} / \partial \lambda_{i}=f\left(v, z_{i}\right)$

For $d z_{i} / d z_{k}$ we have that
$\frac{\partial z_{i}}{\partial z_{k}}=\delta_{i k}$
where $\delta_{i k}$ is Kronecker's delta, i.e. $\delta_{i k}=1$ if $i=k$ and zero otherwise. This is the case since all z_{i} are held constant except z_{k}.

Using (Eqs. (8) and 14), (Eqs. (12) and 13) can be rewritten as

$$
\begin{align*}
& \sum_{r=1}^{n}\left(\frac{\partial^{2} G}{\partial v_{j} \partial v_{r}}+\sum_{i=1}^{m} \lambda_{i} \frac{\partial^{2} g_{i}}{\partial v_{j} \partial v_{r}}\right) \frac{d v_{r}}{d z_{k}}+\sum_{s=1}^{m}\left(\frac{\partial g_{s}}{\partial v_{j}} \frac{d \lambda_{s}}{d z_{k}}+\lambda_{s} \frac{\partial^{2} g_{s}}{\partial v_{j} \partial z_{s}} \delta_{s k}\right) \\
& \quad=0, \quad j=1, \ldots, n \tag{15}\\
& \sum_{r=1}^{n} \frac{\partial g_{i}}{\partial v_{r}} \frac{d v_{r}}{d z_{k}}+\frac{\partial g_{i}}{\partial z_{i}} \delta_{i k}=0, \quad i=1, \ldots, m \tag{16}
\end{align*}
$$

The system of equations, (Eqs. (15) and 16), is the Hessian of the Lagrangian. At a solution point values can be inserted for all multipliers λ and all derivatives except for $d \lambda_{s} / d z_{k}$ and $d v_{j} / d z_{k}$, the values of which can be found by solving the resulting linear system of equations. Moving the unknowns to the right hand side, the system of equations can be written in matrix form as $A w=b$ where
$A=\left[\begin{array}{cccccc}\left(\frac{\partial^{2} G}{\partial v_{1}^{2}}+\sum_{i=1}^{m} \lambda_{i} \frac{\partial^{2} g_{i}}{\partial v_{1}^{2}}\right) & \ldots & \left(\frac{\partial^{2} G}{\partial v_{1} \partial v_{n}}+\sum_{i=1}^{m} \lambda_{i} \frac{\partial^{2} g_{i}}{\partial v_{1} \partial v_{n}}\right) & \frac{\partial g_{1}}{\partial v_{1}} & \ldots & \frac{\partial g_{m}}{\partial v_{1}} \\ \vdots & \left.\frac{\partial^{2} G}{\partial v_{n} \partial v_{1}}+\sum_{i=1}^{m} \lambda_{i} \frac{\partial^{2} g_{i}}{\partial v_{n} \partial v_{1}}\right) & \ldots & \left(\frac{\partial^{2} G}{\partial v_{n}^{2}}+\sum_{i=1}^{m} \lambda_{i} \frac{\partial^{2} g_{i}}{\partial v_{n}^{2}}\right) & \frac{\partial g_{1}}{\partial v_{n}} & \ldots \\ \vdots \frac{\partial g_{1}}{\partial v_{n}} \\ \vdots & \ldots & \frac{\partial g_{1}}{\partial v_{n}} & 0 & \cdots & 0 \\ \frac{\partial g_{m}}{\partial v_{1}} & \ldots & \frac{\partial g_{m}}{\partial v_{n}} & 0 & \ldots & 0\end{array}\right]$
a function h
$h\left(v_{1}, \ldots, v_{n}\right)$

$$
\begin{equation*}
w=\left[\frac{d v_{1}}{d z_{k}} \cdots \frac{d v_{n}}{d z_{k}} \frac{d \lambda_{1}}{d z_{k}} \cdots \frac{d \lambda_{m}}{d z_{k}}\right]^{T} \tag{10}
\end{equation*}
$$

https://daneshyari.com/en/article/7955609

Download Persian Version:
https://daneshyari.com/article/7955609

Daneshyari.com

[^0]: * Corresponding author at: Division of Physical Metallurgy, Department of Materials Science and Engineering, The Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden.

 E-mail address: hlarsso@kth.se (H. Larsson).

