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a b s t r a c t

The binary phase diagrams of the YCl3–ACl (A¼Li, Na, K, Rb, Cs) systems were studied using the

CALPHAD technique and nonlinear mathematical method. The new modified quasi-chemical model in

the pair-approximation for short-range ordering was applied to describe the Gibbs energies of the

liquid phase in these systems. And the paper created the Artificial Neural Networks (ANN) model to

study the interaction coefficients of two ending compounds composing the binary systems which are

important for thermodynamic study of multi-elements system. Based on measured phase equilibrium

data, a set of thermodynamic functions has been optimized and calculated. The effects of ionic radius,

electronegativity and mole fraction of YCl3 on interaction coefficients were investigated in more detail.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Entering the 21st century the rare earths play a very important
role in modern materials [1]. The electrolysis of molten salt of the
rare earths has been widely used for production of rare earth
metals and their alloys. Here is a work of our series studies using
the CALPHAD technology to examine and optimize the experi-
mental phase diagram then obtain a number of thermodynamical
parameters for the binary systems.

To continue our previous work [2–7], the thermodynamic
optimizations and calculation of the YCl3–ACl (A¼Li, Na, K, Rb, Cs)
systems are carried out in this study. This work investigated the
changing law of interaction coefficient (mixing enthalpy) in
micro-properties of elements composing the binary systems for
the first time; meanwhile the modified quasi-chemical model in
the pair-approximation for the short-range ordering was used to
describe the liquid phase’s thermodynamic properties (MQCs in
short). Through the measured data by XRD (X-ray diffraction),
DTA (differential thermal analysis) and experimental integral
properties, the systems’ phase diagrams were optimized. The
results showed that the optimized parameters and experimental
data are thermodynamically self-consistent.

2. Thermodynamical model

Pelton and Blander [8–10] and Blander et al. [11] proposed a
short-range ordering model, a more universal model, based on the
quasichemical theory of Guggenheim [12] and Guggenheim and
Fowler [13] to describe and optimize thermodynamic properties
of binary system with the strong interaction between two side
compounds. Instead of the real components A and B in the
system, the first-nearest-neighbor pairs A–A, B–B, A–B were used
in this model.

ðA2AÞpairþðB2BÞpair ¼ 2ðA2BÞpair ð1Þ

ZAnA ¼ 2nAAþnAB ð2Þ

ZBnB ¼ 2nBBþnAB ð3Þ

where, nA and nB are the number of moles of A and B, nij is the
number of moles of (i–j) pairs. The coordination numbers of A and
B are the ZA and ZB.
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The Zij is the coordination number of i–j pair.
In Eqs. (4) and (5), ZAA and ZBB are the coordination numbers of

pure component A and pure component B.
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The pair fraction Xij is defined as

Xij ¼
nij

ðnAAþnBBþnABÞ
ð6Þ

Aslo, the mole fractions XA and XB are defined as

XA ¼
nA

ðnAþnBÞ
¼ 1�XB ð7Þ

And the coordination-equivalent fractions YA and YB are
defined as follows:

YA ¼ ZAnA=ðZAXAþZBnBÞ ¼ ZAXA=ðZAXAþZBXBÞ ¼ 1�YB ð8Þ

By substituting Eqs. (2) and (3) into Eqs. (6) and (8), some
equations are obtained as follows:

YA ¼ XAAþ
XAB

2
ð9Þ

YB ¼ XBBþ
XAB

2
ð10Þ

Eq. (11) shows the mole Gibbs energy of solutions

G¼ ðnAg0
AþnBg0

BÞ�TDSconf ig
þnAB=2DgAB ð11Þ

where gA
0 and gB

0 mean the pure component’s mole Gibbs energy,
and DSconfig is the configurational entropy of mixing given by
randomly distributing the (A–A), (B–B) and (A–B) pairs.
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The molar pair Gibbs energy of i–j pairs, i.e., g0
AA, g0

BB, and g0
AB

are defined according to the following expressions:
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The Gibbs energy of A–B system is given as follow:
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In Eq. (15), DgAB is the molar energy of A–B pairs, also it is a
function of the mole fractions of i–j pairs, and it can be expressed
as follows:
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In Eqs. (16) and (17), iþ jZ1. If i¼0 or j¼0, it means the
mixing influence of the system was not considered.

3. Study of interaction coefficient

3.1. Nonlinear model of interaction coefficient

The interaction coefficient as a macro-property is important
for thermodynamic study of multi-elements system. The micro-
structures of the matter including spacial and electrical properties
of elements determine the macro-properties of the matter.
To study these binary systems in more detail, the interaction
coefficients representing mixing enthalpy usually considered in
different thermodynamic models such as model of ideal solution,
regular solution and quasi-chemical solution, were tried to study
at microstructure angle by building the micro–macro model.

The interaction coefficients by thermodynamic models are
usually hard to get good agreements with experimental data.
Even the latest model like the quasi-chemical model shows not so
good results (see Fig. 6).

Artificial Neural Networks (ANN) as a powerful nonlinear
technology was chosen to use in the first time in this study,
because of the complexity of relations among the microstructures
and the interaction coefficients. At present the same study was not
found in published paper. The three-layer back propagation of ANN
was considered in building the model. The 3-3-1 topologic struc-
ture was shown below. We call this way as Interaction Coefficient
Model by Neural Networks (ICN2 in short). According to the 49 sets
of experimental data [14], the leave-three-out principle was
obeyed in the study. It means when data was trained in 3-3-1
topologic structure networks the 46 training sets of data were
chosen from 49 randomly. These 46 sets of data were also used to
test. The left 3 sets of data were used to validate (Fig. 1).
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Fig. 1. Topologic structure of 3-3-1 networks.
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