
Application of the CALPHAD method to predict the thermal conductivity
in dielectric and semiconductor crystals

Aı̈men E. Gheribi n, Patrice Chartrand

Centre for Research in Computational Thermochemistry (CRCT), Department of Chemical Engineering, École Polytechnique, C.P. 6079, Succursale ‘‘Downtown’’,
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a b s t r a c t

A novel method, based on the Debye model of the density of the lattice vibration energy [1,2], is used to

predict the thermal conductivity of insulator materials from room temperature up to the melting point.

The model links the density of the lattice vibration energy and the mean free path of the phonons to the

high temperature limit of the Debye temperature, yD ð1Þ, and to the Grüneisen parameter, g(N). The

phonon contribution to the thermal conductivity can be predicted from the knowledge of yD ð1Þ and

g(N). The contribution of the present work is a new CALPHAD (CALculation of PHAse Diagrams)

Method, based on physical models, where the heat capacity, the thermal expansion and the adiabatic

bulk modulus are optimized simultaneously in order to calculate yD ð1Þ and g(N). In addition, a simple

method to predict yD ð1Þ and g(N), and thus the thermal conductivity without any experimental data,

is also presented. Results are given for the thermal conductivities of some typical insulator materials

such as salts (halides), oxides and semiconductors. It is found that the agreement between the

calculations and the available experimental data is excellent.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The thermal conductivity is one of the most important physi-
cal parameters of a solid. There are many situations in design or in
process modelling where the thermal conductivity plays an
important role, above all for the prediction of heat and mass
transfer phenomena. The thermal conductivity controls the tem-
perature gradients occurring in materials. These temperature
gradients lead to internal stresses and thus, for transformations
depending on the cooling rate and on the temperature, the
thermal conductivity is directly related to the grain size and to
the residual tensile strength. Hence, the thermal conductivity is
an essential property for the prediction of the temperature
dependence of the microstructure and thermo-mechanical prop-
erties, and for understanding heat treatment and solidification.
The thermal conductivity is not easily measured, particularly for
dielectric crystals with low thermal conductivity. Therefore, the
thermal conductivity data of many dielectrics and semi-conduc-
tors, often close to ambient temperature conditions, are com-
monly scarce and incomplete. For most common materials,
however, reliable experimental data are readily available in the
literature. Hence it would be desirable to be able to predict the
thermal conductivity of a wide range of materials by the means of

a proven methodology, based on a plausible physical model. More
recently, first principle calculations, based on ab initio molecular
dynamics in which the forces are computed from the density
functional theory, have been applied to predict the thermal
conductivity of simple oxides [3–6] (MgO, SiO2, ZrO2 and MgSiO3)
and semiconductors elements (Si and Ge) [7,8]. The predictions
agree with the experimental data within 15% to 40%. The phonons
mean free path has a magnitude of few nanometers requiring a
large simulation box size for the calculation of the thermal
conductivity. Several nanoseconds (410 ns) are also necessary
to simulate the thermal conductivity of solids. Atomistic first
principle calculations of the thermal conductivity are thus extre-
mely time consuming.

A number of empirical relationships and models have been
developed to predict the thermal conductivity of insulating
materials. Unfortunately, many of these methods are restricted
to homogeneous series of materials and require many adjustable
parameters which have not been correlated with the readily
available physical properties. In addition, the higher the tempera-
ture, the less precise and predictive are the empirical relation-
ships. From a theoretical point of view, the thermal conductivity
of dielectric crystals is governed by the phonon–phonon scatter-
ing, but even at present an exact analytical expression is lacking.
Since the work of Debye [9] and Pierls [10], many analytical
models for the thermal conductivity have been developed based
on the single mode relaxation time approximation in the Boltz-
mann transport equation with different degrees of complexity
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[11,12]. In these models, some forms of the temperature and
frequency dependencies of the relaxation times are assumed and
must be fitted to experimental data. On account of the complex
structure of the Brillouin zone and the strong temperature
dependence of the phonon distribution function, the relaxation
time can have a complicated dependence on the phonon fre-
quency and temperature.

Slack et al. [1,2] showed that, for many dielectrics, the
‘‘unklapped process’’ (U-process) model combined with the
Klemens–Callaway approximation of relaxation times could lead
to a quite good prediction of the thermal conductivity and of its
temperature dependence. The Klemens–Callaway’s relation links
the relaxation time to the high temperature limit of the Debye
temperature YD(N), and to the Grüneisen parameter, g(N) .
Consequently, the relaxation times, and thus the thermal con-
ductivity, can be predicted with a quite good accuracy if the
parameters YD(N) and g(N) are precisely known.

In this article, a new CALPHAD Method, leading to an accurate
determination of both parameters YD(N) and g(N), is proposed
to predict with a high level of accuracy the intrinsic thermal
conductivity of phonons in dielectric and semiconductor materi-
als. Not only does the model presented in this paper have a
theoretical basis but also the parameters are correlated with
readily available physical properties.

Sample calculations for various types of materials are pre-
sented. We will show that the new method presented in this work
allows prediction of the thermal conductivity as a function of
temperature with a good accuracy.

2. Modeling the thermal conductivity of insulators

The macroscopic thermal conductivity is defined from Four-
ier’s Law for heat flow under thermal gradient. The steady state
heat flow q

!
is obtained by keeping the system and heat

reservoirs in contact, thus:

q
!
¼� r

!
T ð1Þ

where is the thermal conductivity tensor, and q
!

is the heat flux
produced by the temperature gradient r

!
T . Fourier’s Law of heat

flow can be derived from linear response theory [13]. For isotropic
systems, the conventional thermal conductivity is given by the
average quantity in the different directions:

/lSiso ¼ TrðlÞ=3 ð2Þ

Thermal conductivity for many salts is, to a good approxima-
tion, isotropic, particularly for halides. For insulators, the con-
tribution to the thermal conduction comes from atomic
vibrations, the so-called lattice thermal conductivity, and radia-
tive heat transfer if the medium is translucide, the so-called
radiative thermal conductivity. In both the high and low tem-
perature cases the lattice thermal conductivity is given by
[14–16]:

/lSisoðTÞ ¼
1

2p2

Z oD

0

tðoÞ
v

Cv,phðoÞo2do ð3Þ

where v is the phonon velocity, a is the volume of a single atom
(molecule), kB is the Boltzmann constant and _ is the reduced
Planck constant. oD ¼ ð6p2Þ

1=3 v=a is the Debye frequency, Cvph

(o) is the specific heat at constant volume per normal mode at o,

and t(o) is the effective phonon relaxation time. A comprehen-
sive model for lattice thermal conductivity of a solid requires not
only the knowledge of the crystal structure and phonon spectrum
but also an understanding of various types of phonons scattering
rates and their temperature and frequency dependencies. At high
temperature, (TZyD=3, where yDis the Debye temperature)

Roufousse and Klemens [17,18] suggested that the relaxation
time does not include the effect of three-phonon momentum
conservation. In the case of a non-momentum conservation
process (the so-called ‘‘Umklapp’’ or ‘‘U-processes’’) only the
interactions among the phonons themselves via anharmonic
processes are significant and the phonon free path length
decreases with temperature and is inversely proportional to the
density of phonons. Under these conditions, and assuming that
only the acoustic phonon modes participate in the heat conduc-
tion process, several expressions of the relaxation time were
suggested in the literature. There are several expressions for the
relaxation time due to the U-processes in the literature; however,
it was shown [12,15,19] that at high temperature the relaxation
can be approximated by a function proportional to �(oT)�2. For
a system with one atom per primitive cell, Slack [19] suggests
that the relaxation time can be approximated as:

tðoÞ ¼ ½o2xðTÞ��1 ð4Þ

where xðTÞ ¼ 18p3kBTg2ðTÞ=
ffiffiffi
2
p

ma2ðTÞo3
DðTÞ, with g¼�ð@ lnyD=

@ lnVÞV which is the Grüneisen parameter, and m is the average
atomic (or molecular) weight. With these considerations, and
assuming that at high temperature the phonon contribution to
the heat capacity is approximated by the Dulong-Petit limit (3kB),
and that the Debye frequency and Grüneisen parameter are equal
to their high temperature limit (respectively, o3

D 1ð Þ and g 1ð Þ),
the integration of Eq. (3) leads to:

/lSisoðTÞ ¼
f maðTÞo3

Dð1Þ

g2ð1ÞT
ð5Þ

where f is a constant, and for a expressed in Å and m in atomic
mass unit (for whichf ¼ 4:342� 10�17). However Julian et al.
[19,20] showed that the previous relation must be corrected to
take into account the phonon–phonon and the phonon-defect
interactions effects. They determined the following expression for
the parameter f:

f ¼
1:856� 10�17gð1Þ2

0:228�0:514gð1Þþg2ð1Þ
ð6Þ

Thereafter, Slack [21,22] extended the model to more complex
structures using a simple counting scheme. For crystals with n

atoms per primitive unit cell he suggested that:

/lSisoðTÞ ¼
f maðTÞo3

Dð1Þn
1=3

g2ð1ÞT
ð7Þ

In this model, the Debye frequency is directly determined by
integration of the acoustic portion of the phonon density of state.
Thus, the knowledge of either the phonon density of states or the
phonon dispersion relation is required in order to determine the
Debye frequency. Unfortunately, these data are not available
theoretically and they are difficult to determine from the theory.
From a practical point of view it is better to use the Debye
temperature, yD ¼ _oD=kB, instead of the Debye frequency. Ander-
son [23] showed that the classical Debye temperature yD (deter-
mined from the heat capacity, the sound velocity and the elastic
constants) can be linked to the acoustic mode Debye temperature
as follows: yD ¼ n�1=3yD , and thus the thermal conductivity of an
insulator with a complex crystalline structure is defined as:

/lSisoðTÞ ¼ f
kB

_

� �3 maðTÞy3
D ð1Þ

n2=3g2ð1ÞT
ð8Þ

The thermodynamic Grüneisen parameter gth is defined by
[26]

gthðTÞ ¼ aV ðTÞVmðTÞBSðTÞCpðTÞ
�1

ð9Þ

where a¼ V�1
ð@V=@TÞP is the volumetric thermal expansion,

VmðTÞ is the molar volume, CpðTÞ ¼ ð@H=@TÞP the molar heat
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