
Temperature dependence of static spin conductivity of gapped
graphene

Hamed Rezania a, *, Rostam Moradian b, Saeed Marvi b

a Department of Physics, Faculty of Science, Razi University, Kermanshah, Iran
b Department of Physics, Faculty of Science, Malayer University, Malayer, Iran

a r t i c l e i n f o

Article history:
Received 8 April 2018
Received in revised form
1 June 2018
Accepted 2 June 2018

Keywords:
Spin conductivity
Hubbard model
Green's function
Linear response
Graphene

a b s t r a c t

We address temperature dependence of static spin conductivity of gapped graphene for various mag-
netizations, coulomb repulsion interaction strengths and energy gap parameters. We have used Hubbard
model for describing the electron dynamics of the system. Based on linear response theory, we have
obtained the spin conductivity of the system using Green's function approach. Our results show the
temperature dependence of static spin conductivity has a pick that moves to higher temperatures by
increasing the magnetization, strength of coulomb repulsion interaction and energy gap. Furthermore, at
fixed temperature, static spin conductivity decreases by increasing mentioned physical parameters.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Graphene is a flatmonolayer of carbon atoms tightly packed into
a two-dimensional honeycomb lattice which was first fabricated
experimentally by Novoselovetal in2004 [1,2], and it is a basic
building block for all nano structure materials [3e5]. This stable
structure has attracted considerable attention because of experi-
mental progress and because of exotic chiral feature in its electronic
properties and promising applications [6].

Among various types of nanoscale devices, carbon-based
nanostructures, such as graphene, are appealing for spintronics or
spin based electronics. What makes graphene a promising material
in the field of spintronics, is its unique spin transport performance
in particular at room temperature [7] where spin life times of up to
3.7 ns [8] and spin diffusion length of 12 mm [9] have been
measured by means of electrical Hanle spin precession measure-
ments in non-local spin-valve devices. The relatively weakness of
spin-orbit and hyperfine interactions should lead to long spin
diffusion length and long spin coherence times [10,11].

The transport of quantum information via spin degrees of
freedom is a novle topic for both theoretical and experimental
physicists. One of the most important physical quantity in relation

to quantum information theory is spin current conductivity or
spintronic of the electronic. The conductivity is defined as the linear
current response to a uniform, frequency dependent, current-
driving, external force field, e.g., an electric field in the case of
charge transport or a gradient of the z-component of the magnetic
field for spin transport. Spin transport in insulating antiferromag-
nets described by the XXZ Heisenberg model in two and three di-
mensions in Ref. [12]. Spin and charge transport properties in
graphene-based single-layer and few-layer spin-valve devices is
discussed in Ref. [13]. It is presented an overview of challenges and
recent advances in the field of device fabrication. The static spin
conductivity and spin Drude weight of one-dimensional spin-1/2
anisotropic antiferromagnetic Heisenberg chain in the finite mag-
netic field is investigated theoretically in Ref. [14]. It is used the self-
consistent harmonic approximation together with the Linear
Response Theory to study the effect of nonmagnetic disorder on
spin transport in the quantum diluted two-dimensional anisotropic
Heisenberg model with spin-1/2in a square lattice [15]. The spin
transport, in the disordered phase, of the frustrated Heisenberg
antiferromagnet with spinS¼ 1 with next and next-nearest
neighbor interactions on a square lattice is analyzed. The spin
conductivity is calculated using a SU(3) Schwinger boson formalism
and the Kubo theory, within the ladder approximation. The spin
conductivity exhibits a nonzero Drude weight at finite temperature
[16]. Using the SU(3) Schwinger's boson theory, it is studied the
spin transport in the frustrated anisotropic three dimensional XY* Corresponding author.
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model at T¼ 0 with single ion anisotropy. It is investigated the
behavior of the spin conductivity for this model that presents ex-
change interactions. The results showed a metallic spin transport
for u> 0 and a superconductor spin transport in the limit of DC
conductivity [17].

In this work we calculate static spin conductivity of gapped
graphene in the context of Hubbard model. Using linear response
theory and green's function approach, we calculate the static spin
conductivity in terms of one particle Green's function. It can be seen
that static spin conductivity has a pick at a characteristic temper-
ature. We investigate the impact of magnetization, energy gap,
strength of coulomb repulsion interaction on the static spin con-
ductivity of gapped graphene.

2. Hamiltonian model and Green's functions of gapped
graphene

Graphene is a two dimensional honeycomb lattice that carbon
atoms located on the corner of hexagons with two different sym-
metries A and B as illustrated in Fig. 1. The electron dynamics has
been described by the following expression
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where Hð0Þdenotes noninteracting tight binding model Hamilto-
nian and HU is electron-electron repulsion strength. a and b refer to
two different sublattices in the honeycomb structure and i,j in-
troduces the nearest neighbor unit cells where each site belongs to

one of two different sublattice A or B. cyias is creation operator of an
electron with spin s at subsite a on ith unit cell site. ms is spin
dependent chemical potential. U is the repulsion coulomb inter-

action strength and tabij refers to hopping integral so that tAAii ¼ ε0

and tBBii ¼ �ε0.
Diagonalization of the Hubbard Hamiltonian Eq. (1), within

Mean field approximation under nearest neighbor approximation,
yields a two band spectrum for anti-ferromagnetic phase. The band

energies of electrons takes the following form [18]:
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ns is electron density with spin s andm is staggeredmagnetization,

△ is energy gap and fð k!Þ ¼ �t
P
i
ei k
!

: d
!

i . Here d
!

i is connection

vector of nearest neighbors.
The single particle Matsubara Green's function of gapped gra-

phene in the atomic Hilbert space represents a 2� 2 matrix so that
each element of this matrix is given by:

G ab
s ðk; tÞ ¼ �TcaksðtÞcybksð0Þ (3)

t is the imaginary time. In the band space, the single particle
Matsubara Green's functions elements are given by Ref. [18]:
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So that XsjðkÞ and YsjðkÞ follow:
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In the section 3, we will use these Green's functions to obtain
the spin conductivity of gapped graphene.

3. Static spin conductivity of gapped graphene

The spin conductivity is defined as linear current response to an
external force field, Such asa gradient of the z-component of the
magnetic field. Spin current density can be written as bellow:

j
! ¼ sV

!
hz: (11)

s is conductivity tensor and hz is

hzðl; tÞ ¼ gmBB
zðl; tÞ: (12)

Here l, t, g, mB and Bz are respectively position, time, gyromagnetic
constant, Bohr magneton and z component of magnetic field,
respectively.The magnetic field depends on both time and position.

The x-component of spin current density due to the z-Fig. 1. Honeycomb lattice of graphene. A and B are two different symmetries.
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