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A B S T R A C T

A consistent computational scheme is proposed for calculating various thermophysical properties under si-
multaneous high temperature and high pressure condition in conjunction with first principles density functional
theory, whereas anharmonic contribution is added perturbatively. We have demonstrated that the Grüneisen
parameter γth can be calculated from the knowledge of ab initio binding energy, and separate volume dependence
of γth is required. Taking copper as a prototype, we have calculated static and dynamic equation of states and
some thermodynamic properties along the shock Hugoniot. Present study reveals the importance of anharmonic
effect on various thermal properties by examining Grüneisen parameter. Computed high pressure melting curve
confirms this assertion and concludes the non-negligible contributions of temperature dependence of Grüneisen
parameter.

1. Introduction

Thermodynamically, equation of state (EOS) is the relation between
any of the two macroscopic quantities like pressure (P), temperature
(T), volume (V), (≡ density, ρ), entropy (S), enthalpy (H) keeping the
third quantity constant; of which relations P ≡ PT (V) and V ≡ VT (P)
are extensively studied experimentally and theoretically [1–3]. Due to
the development in static high pressure experimental techniques to
pressures up to 400 GPa and dynamic shock condition to pressure
greater than 1 TPa and temperature higher than few tens of kilo Kelvin
is possible to attain. Correspondingly, newer and newer theoretical
models have come up [4–7] to understand and explain these isotherms.
Though, the statistical mechanics offer rigorous physical foundation for
these EOS in terms of classical partition function; however, in practice
the evaluation of vibrational response of a crystal to total free energy at
high temperature and high pressure environment till date is computa-
tionally daunting task. For metallic system, such as copper, contribution
from thermally excited electrons should also be accounted for. At
temperatures near or above the Fermi temperature (e.g. for copper,
TF = 8.12 × 104 K) electronic contribution can be treated separately
when classical partition function is used to compute Helmholtz free
energy. Ab initio all-electron energy-band structure [8] methods to
compute electronic free energy, F V T( , )el , at each point in V-T plane are

quite cumbersome. In the present study, we have therefore used an
interpolation scheme (described in section-II) proposed by McCloskey
[9] which connects low-temperature and low-pressure free-electron
Sommerfeld term to ultrahigh pressure Thomas-Fermi (TF) results to
account for electronic excitations. The thermal contribution due to
lattice-vibration is included through quasiharmonic (QH) Mie-Grü-
neisen (MG) EOS. Since MG-EOS requires volume dependent thermo-
dynamic Grüneisen parameter γth a priory, different parametric relations
are proposed for γ V( )th . The parameters of these equations are usually
fitted to known EOS [3,10,11]. We show in the present study that such
fitting procedure can be avoided and based on well justified assump-
tions for γth as a function of volume, it can be obtained from the
knowledge of binding energy [12–15].

In the previous paper [16], henceforth we call it paper-I, we have
investigated various thermal properties of silver, and the role played by
anharmonicity in determining these properties at high temperature but
zero pressure condition. In the present study, we examine the role of
compression on some thermodynamic properties under simultaneous
high pressure and high temperature environment for solid copper. In
particular, we combine first principles density functional perturbation
theory (DFPT) based lattice contribution to MG-EOS in addition to
lowest order perturbative term to account for anharmonic free energy
along with contributions from thermally excited electrons. Though
anharmonicity reduces with pressure; present results for γth show its
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importance along strong shock condition. Thus, the main objective of
the present study is to report systematic results for static and dynamic
EOS and some thermodynamic properties along the shock Hugoniot.
Temperature along the principal shock Hugoniot is also determined.
Furthermore, high pressure melting curve is deduced within the Lin-
demann's criterion to explore the sensitivity of temperature-dependent
Grüneisen parameter.

The paper is organized as follows. In the next section, we present
theoretical background with necessary equations to formulate the
problem. Section-III highlights comparison of present findings with
other experimental and theoretical results – where available. Based on
this comparison, important inferences are drawn to conclude the paper
in the final section.

2. Theoretical formulation

Classically, ignoring electron-phonon interaction, the total free en-
ergy [16] can be written as a sum of (i) cold energy E V( )C , (ii) QH
lattice-vibrational energy F V T( , )QH

l , (iii) electronic free energy
F V T( , )el and (iv) anharmonic energy F V T( , )An .

= + + +F V T E V F V T F V T F V T( , ) ( ) ( , ) ( , ) ( , ).C QH
l

el An (1)

The total isothermal pressure can be obtained through thermo-
dynamic relation, = −( )P V( ) dF V T

dV T

( , ) . Thus, =P V( )

+ + +P V P V T P V T P V T( ) ( , ) ( , ) ( , )C QH
l

el An . The cold energy and hence
the cold pressure (PC) is derived by solving Kohn-Sham energy func-
tional using ultrasoft pseudopotential within the GGA due to Perdew-
Burke-Ernzenhof. The ab initio calculation for phonon dynamics were
performed using PWSCF and PHONON code [17]. The pseudopotential
was generated using Vanderbilt code with [Ar] 3s23p6 as the core state.
To tackle in the expansion of the augmentation charges for such non-
norm-conserving pseudopotential a relatively high cut-off of 900 Ry
was used, while a plane wave basis set with a cut-off of 90 Ry was used
after checking the convergence for electronic SCF. Total energies were
then calculated self-consistently within the density functional theory
(DFT). Phonon dynamical matrices were computed using 4 × 4 × 4
→q -point mesh; while dense 14 × 14 × 14 regular k-point mesh was
implemented to Fourier interpolates these matrices. Force constants so
deduced are then used to compute p-dos. The Methfessel-Paxton (MP)
scheme with smearing parameter equals to 0.06 Ry was used to tackle
convergence problem due to free electrons. Total energy (Etot) at var-
ious volumes so deduced is then fitted to third order Birch-Murnaghan
(BM) EOS to derive equilibrium volume V0 (≡ lattice constant, a0), bulk
modulus B0 and its first order pressure derivative B′. Present results are:
a0 = 6.8273 a.u. (6.8219), B0 = 148.7 GPa (142.3), and B′ = 4.11
(3.91, 4.1, 4.8, 5.3, 5.59, 5.44). Experimental findings are shown in
parenthesis, which are quoted from Ref. [18]. The cohesive (cold) en-
ergy curve is derived using the relation = −E V E V E( ) ( )C tot atom, where
Eatom is obtained with V = 10V0 such that practically it represents a
single isolated atom. Results for cohesive energy are fitted to third order
Birch-Murnaghan (BM) EOS to determine the cold pressure.

For lattice-vibrational part, we differentiate the second term in Eq.
(1) with respect to volume to get,
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where →γ ω( )i λ q, represents dynamic mode-Grüneisen parameter and g ω( )
denotes p-dos, while all the other physical quantities have usual
meaning [16]. Equation (2) can be solved in principle by finding vo-
lume dependent phonon frequency →ω V( )λ q, and using the pho-
non–density-of-state (p-dos) in the first Brillouin Zone (BZ) at each
temperature, where use can be made,
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.i
λ q,
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However, this procedure is mathematically tedious and seldom used
in practice without imposing some plausible approximations. More
tractable form is possible; if one assumes all ′γ V( )i s are equal. In fact,
previous all studies indicate that the result based on this assumption
agree well with experimental and simulation findings [3,19,20]. With
this point of view, in Eq. (2), γ V( )i can be assumed independent of index
λ and →q . It can be written as volume only dependent thermodynamic
Grüneisen parameter, i.e. ≡γ V γ V( ) ( )i th . Thus, solving Eq. (2) requires
to know γ V( )th , which can be computed as follows. Recently, Wang and
his co-workers [6,12,21] have proposed and later by the other re-
searchers [13–15] have used a way to compute generalized force con-
stant k V( ) for vibrating lattice ions.
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Here, a0 denotes equilibrium lattice constant and a parameter λ
determines the degree of anharmonicity. Commonly adopted different
choices for λ; namely, −1.0, 0, +1.0, +1.5, corresponds, respectively,
to different literature expressions for Grüneisen parameter: due to
Slater [22], due to Dugdale and MacDonald [23], due to Vashchenko
and Zubarev [24], and that due to improved free-volume theory by Stacy
[1]. In general, λ can also be treated as adjustable parameter [14,25,26]
and volume dependent, however. With this generalized force constant
and by assuming lattice ions are performing quasiharmonic vibrations,
their mean vibrational frequency can be estimated as follows,
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Here, M is the mass of lattice ion. Now, replacing →ω V( )λ q, in Eq. (3)
by Eq. (5); an ionic or lattice part of Grüneisen parameter is written as,
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In Refs. [6,12,16], it was demonstrated that the choice λ = −1.0
gives better thermal expansion coefficient, and we retain the same in
the present study also. It is also to be noted that expression (7) is
equivalent to the following equation (8) for γ V( )th written explicitly in
terms of pair-potential ϕ R( ) and its derivatives for a particular choice of
λ = +1.0.
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where we have used ≡ ∑E V ϕ R( ) ( )c
1
2 . Here,

⎯→⎯
≡R R represents the

magnitude of direct lattice vectors for fcc structure and Ci denotes the
co-ordination number of ith shell. Thus, Eq. (7) represents the most
general definition of γ V( )th , and has more general appeal than Eq. (8).
For instance, current all state-of-art calculations give binding energy,
while pair-potential can be derived only approximately [27,28] from
the total energy functional. Furthermore, volume dependence of γth is
now intrinsically incorporated in Eq. (6) and no separate parametric
expression is required. With these line of arguments, the lattice con-
tribution to total pressure P T( )QH

l is now given as,
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