ELSEVIER

Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier.com/locate/commatsci

An ab initio study on stacking and stability of TiAl₃ phases

C.M. Fang*, Z. Fan

BCAST, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK

ARTICLE INFO

Keywords: TiAl₃ intermetallic phases First-principles calculations Symmetry and crystal structures

ABSTRACT

TiAl $_3$ persists in many Al alloys and plays a detrimental role in solidification of related melts. Knowledge about TiAl $_3$ phases and phase relations is of importance to get some insight into the solidification processes, the microstructures and the properties of Al alloys. In this manuscript, we present a systematic study of the basic structures of TiAl $_3$ with aid from *ab initio* density functional theory (DFT) calculations. The study confirms that the ground state of TiAl $_3$ has the D0 $_{23}$ structure, whereas the observed D0 $_{22}$ type is a metastable phase. The calculations have identified the stability of a series of stacking composed of both D0 $_{22}$ - and D0 $_{23}$ -TiAl $_3$ units. At elevated temperature, the equilibrium configuration contains neither pure D0 $_{23}$ nor pure D0 $_{22}$ but will consist of a combination of the TiAl $_3$ cubes arranged to minimise its Gibbs energy. Stacking default investigation reveals a large energy barrier for the D0 $_{22} \leftrightarrow$ D0 $_{23}$ transition. The obtained information sheds some light on the rich variety of the experimental observations in Al alloys, and further to understand the complex titanium aluminides and their thermo-structural properties.

1. Introduction

TiAl₃ has been a topic of intensive research due to its rich variety of phases, unique structures and industrial applications. This compound plays an important role in heterogeneous nucleation of Al alloys [1–5]. TiAl₃ acts as a grain refiner independently [2,3] or co-plays with TiB₂ in the widely used Al-5Ti-B or Al-3Ti-B master alloys [4]. Recently high resolution transmission electron microscopy (HRTEM) observations revealed the formation of one most-likely TiAl₃ atomic layer at the TiB₂ substrate in Al. This two dimensional compound (2DC) of TiAl₃ structure plays a crucial role in the solidification of Al alloys [5,6]. Moreover, TiAl₃ can be formed at Ti-Al interfaces during thermal treatments for Al alloy welding [7,8]. This indicates the importance of developing some understanding about the compound for industrial applications. Ti-Al compounds including TiAl₃ and their phase relations have been a subject of extensive investigations, probably just second only to the Fe-C system [9-15]. Recently, Batalu and co-workers analysed and reevaluated the Ti-Al binary phase diagram and showed that there is no phase transition for the TiAl₃ (probably D0₂₂ structure) up to its peritectic point [9]. Schuster and Palm showed a low-temperature (LT) to a high temperature (HT) phase transition for TiAl₃ but without a clear transition temperature [10]. In other binary phase diagrams, a LT-HT transition occurs at 735 °C [11.12] or at about 600 °C [13-15]. There have been experimental reports on the rich variety of structures of different lengths of c-axis and variation of corresponding a-axis of the

(D0₂₂-)TiAl₃ (Table 1) [7–28]. By sintering of elemental powders, Nakayama and Mabuchi obtained the cubic L12-TiAl3 phase which contains some transition metal elements [7,26]. Further experiments confirmed that the L1₂-TiAl₃ phase is stabilized by impurities [27-29]. To get some insight into the relations for the TiAl3 phases, theoretical methods have been employed for TiAl₃ [30-42]. The early first-principles simulations employed the local density functional approximation (LDA) [30-34] for the known structures and demonstrated the high stability of the D022-type structure [32]. Based on the available experimental values and ab initio calculations, Zope and Mishin built interatomic potentials for (large-scale) atomistic simulations of the Ti-Al system [36]. Using full-potential linear muffin-Tin orbital (PF-LMTO) method, Amador and co-workers investigated the influence of atomic stackings and atomic displacements from the ideal positions and revealed that the $D0_{23}$ -phase is the ground state [30]. This conclusion was confirmed later by other calculations using various first-principles density-functionals [37-44] (Table 1). Zhang and Wang investigated the lattice vibration contribution to the relative stability of Ti-Al compounds, including the TiAl₃ phases [43]. They concluded that lattice vibration contribution doesn't change the stability order of the TiAl₃ phases. This is understandable since all the TiAl₃ phases have similar local coordination and chemical bonding. Tang and co-workers performed first-principles calculations for some one-dimensional long period structures (1D-LPSs) based on the cubic L1₂-TiAl₃ [45,46]. In the present manuscript, we have analysed systematically the existing TiAl₃

E-mail address: changming.fang@brunel.ac.uk (C.M. Fang).

^{*} Corresponding author.

Table 1
Calculated results (lattice symmetry (lat. sym.) and space group (S.G.); fractional atomic coordinates; and energy differences with respect to the formation energy of the cubic L1₂-TiAl₃ at 0 K (Eq. (1)). *n* in column one represent the number of stacking layers. The schematic structures are shown in Fig. 1.

Phase (n)	Lat. sym./S.G.	Lat. Para. (Å)	ΔE_1 (eV/TiAl ₃)	Method and references
L1 ₂ (n = 1) Fig. 1a/1b	Cubic, Pm-3 m (No. 221)	a = 3.977	0.0	DFT-PBE this work
		a = 3.960	0.0	HSE(PBE0) this work
		Previous DFT calc.		
		a = 3.97	0.0	FP_LMTO [30]
		a = 3.908		DFT-LDA [62]
		a = 3.91		DFT-LDA [38]
		a = 3.8997		DFT-LDA [44]
		a = 3.9854		DFT-GGA [44]
		a = 3.981	0.0	DFT-GGA [40]
		a = 3.978		DFT-GGA [62]
		a = 3.9779	0.0	DFT-GGA [25]
		a = 3.9824		DFT-GGA [27]
		a = 3.977		DFT-GGA [39]
		Experimental data		
		a = 3.967		[42]
		a = 3.967 - 4.05		[37]]
D0 ₂₂ (n = 2) Fig. 1c	Tet.I4/mmm (No. 139)	a = 3.841, c = 8.618	-0.108	DFT-PBE this work
		a = 3.826, c = 8.571	-0.120	HSE(PBE0) this work
		Previous DFT calc.		
		a = 3.76, c = 8.50	-0.091	FP_LMTO [30]
		a = 3.847, c = 8.656		DFT-LDA [35]
		a = 3.79, c = 8.45		DFT-LDA [38]
		a = 3.7678, c = 8.4818		DFT-LDA [44]
		a = 3.8507, c = 8.6332		DFT-GGA [44]
		a = 3.847, c = 8.621		DFT-GGA [46]
		a = 3.843, c = 8.616	-0.112	DFT-GGA [40]
		a = 3.8399, c = 8.6399	-0.096	[30]
		Experimental data		[38]
		a = 3.849, c = 8.610		[19,20]
		$a = 3.847^*, c = 8.585$		[23]
		a = 3.851, c = 8.612		[42]
		a = 3.836, c = 8.5791		[63]
		a = 3.846, c = 8.521		[64]
		a = 3.8537, c = 8.5839		[65]
		a = 3.849, c = 8.610		[67]
		a = 3.8537, c = 8.5839		[65]
N113 (n = 3) Fig. 1e	Tet.P4/mmm (No. 123)	a = 3.881, c = 12.604	-0.124	DFT-GGA, this work
D0 ₂₃ (n = 4) Fig. 1d	Tet.I4/mmm (No. 139)	a = 3.895, c = 16.662	-0.131	DFT-PBE this work
		a = 3.877, c = 16.595	-0.159	HSE(PBE0) this work
		Previous DFT calc.		
		a = 3.81, c = 16.44	-0.101	FP_LMTO [30]
		a = 3.8962, c = 16.6713	-0.127	DFT-GGA[40]
		a = 3.891, c = 16.924		DFT-GGA[42]
		Experimental data		
		a = 3.947, c = 16.679		[25,67]
		a = 3.890, c = 16.824		[42]
		a = 3.875, c = 16.916		[19]
D0 ₁₉	Hex.P6 ₃ /mmm (No. 194)	a = 5.566	+0.203	
		c = 4.724	. 0.200	

phases and predicted various stackings by application of the one-dimensional antiphase domain (1d-APD) model [19-23,47] based on the D022 structure using ab initio density functional theory (DFT). We also performed DFT calculations with hybrid-functional correction for the three known TiAl₃ (L1₂, D0₂₂ and D0₂₃) phases. Our calculations have confirmed that the ground state TiAl₃ has the D0₂₃-type structure. The study also revealed a series of highly stable structures containing DO₂₂ and DO23 components. Symmetry analysis was performed for the obtained structures of high stability. The present study suggests that many experimental observations are the 'averaged structure' of a complex series of TiAl3 structures. The obtained information can serve to characterize the TiAl3 structures in Al alloys, to understand other titanium aluminides in the TiAl-TiAl₃ partial system, and to other intermetallic systems, as well; and further to analyse the two-dimensional compounds (2DC) formed at the substrates during heterogeneous nucleation [4-6].

2. Calculational details

In this study we employed the plane wave method in the Projector Augmented-Wave (PAW) framework which has been implemented in the Vienna *Ab initio* Simulations Package (VASP) [48–51]. The exchange and correlation terms were described using the Generalized Gradient Approximation (GGA) formulations by Perdew, Burke and Ernzerhof (PBE) [52]. It has been well-established that the GGA approximation describes better the 3d transition metals (Ti in this case) and their compounds [52–54]. The cut-off energies for the wave functions and for the augmentation functions were 550 eV and 700 eV, respectively. These values are higher than the default values, 178.330 eV and 328.883 eV for Ti; and 240.300 eV and 291.052 eV for Al. This serves to get high accurate valence-electrons' energies. The electronic wave functions were sampled on very dense grids, in the irreducible Brillouin zone (BZ) for the crystals, e.g. $20 \times 20 \times 20$ grid (220 k-points) for the cubic L1 $_2$ -TiAl $_3$ unit cell, using the Monkhorst and Pack

Download English Version:

https://daneshyari.com/en/article/7956991

Download Persian Version:

https://daneshyari.com/article/7956991

<u>Daneshyari.com</u>