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A B S T R A C T

Crystallographic orientation evolution of metals under dynamic loading conditions is of considerable interest,
but rarely explored in simulations at atomistic scales. Here we present a methodology for atomic-scale or-
ientation mapping, with atomic positions as input. The rotation matrix representing the orientation of a crys-
tallite consisting of a central atom and its nearest neighbors, and corresponding Euler angles, are calculated,
which are used for orientation analysis and visualization. As application cases, we investigate orientation evo-
lution related to grain boundary migration, deformation twinning, deformation within grain interior, partial
grain rotation, and grain refinement in representative FCC, BCC and HCP metals under dynamic loading con-
ditions including shock loading.

1. Introduction

Since deformation of a crystallite is accompanied by a change in
crystallographic orientation [1], its orientation evolution during dy-
namic loading conditions is directly relevant. Quantitative character-
ization of three-dimensional (3D) microstructure is critical for under-
standing deformation mechanisms, and materials design and
manufacturing [2]. Orientation map (OM), orientation distribution
function (ODF), pole figure (PF) and inverse pole figure (IPF) are widely
used to present quantitative information on texture. OM provides spa-
tially-resolved orientation information, while ODF, PF and IPF can
provide statistical (overall) information on texture. In experiments,
combining quantitative optical and scanning electron microscopy with
serial sectioning [3,4], yields 3D microstructures to be mapped. Fo-
cused ion-beam micromachining [5] allows for sectioning at nanometer
spacing. However, these procedures are destructive and time-con-
suming, and inappropriate for dynamic processes [6]. Differential
aperture microscopy [7,8], 3D X-ray diffraction microscopy [6,9,10]
and X-ray diffraction contrast tomography [11–13] have been devel-
oped for nondestructive 3D grain orientation mapping and can be im-
plemented for quasi-static deformation experiments, which takes sev-
eral minutes to hours [14–16]. For high strain rate experiments such as
shock loading, 3D orientation mapping in real time is still impractical
[17].

Currently, simulation is likely the only way to achieve 3D orienta-
tion mapping for high strain rate deformation processes, including fi-
nite element analysis based on crystal plasticity finite-element models
[18–22]; viscoplastic self-consistent approach [23–27]; and Monte
Carlo method which is implemented in grain growth simulation con-
sidering grain boundary energy and mobility via grain boundary mis-
orientation [28–31]. However, the simulations of orientation evolution
at the atomic scale for nanocrystalline materials under dynamic loading
are extremely rare. Comparing to above simulation methods, molecular
dynamics (MD) simulations are ideal to simulate the high strain rate
deformation processes in nanocrystalline materials [32–34]. However,
the vast majority of conventional characterizations in atomistic mod-
eling are limited to calculation of local properties of each atom in terms
of local structure type, energy, stress or local lattice distortion [35–39],
lacking quantitative crystallographic orientation information as offered
by electron backscatter diffraction (EBSD) experiments.

At the atomic scale, different orientation mapping methods were
recently developed for face-centered cubic (FCC) [40,41] and body-
centered cubic (BCC) systems [42,43]. For example, polyhedral tem-
plate matching (PTM) can not only classify local structures, but also
identify local lattice orientations [44]. A major difference between
these methods lies in color-coding which represents the orientation of a
crystallite formed by an atom under consideration and its nearest
neighbors, i.e., the definition of orientation vector. Here, we present a
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methodology for atomic-scale orientation mapping and quantitative
texture characterization from atomic configurations extracted from MD
simulations under elevated stresses. In particular, our methodology
defines orientation vector and color-coding in a way similar to EBSD-
based orientation mapping widely used in experiments, and can be
applied to FCC, BCC and HCP (hexagonal close-packed) systems. Tex-
ture characterization is based on Euler angles calculated for each atom
(in terms of the crystallite consisting of this atom and its nearest
neighbors), and quantifies ODF, PF, and IPF. Five application cases are
presented for representative crystal structures, microstructures and
loading conditions, including shock-induced grain boundary migration
in Cu, deformation in columnar Al, grain refinement in Ta, and texture
evolution in nanocrystalline Ta, as well as tensile deformation in na-
nocrystalline Mg with embedded nanotwins.

2. Methodology

In this section, we present the methodology for atomic-scale or-
ientation mapping and texture analysis, which are based on the or-
ientation analysis of a crystallite containing an atom under considera-
tion and its nearest neighbors. We use “crystallite” and “atom” (which
anchors the crystallite) interchangeably unless stated otherwise.

Given a crystal structure, we find the nearest neighbors of each
atom within the nearest neighbor distance, which is obtained from the
radial distribution function [45]
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where 〈 〉n r( ) is the average number of atoms in a shell of thickness rΔ at
distance r from an atom under consideration, and ρ0 is atom density.
The value of r at the valley between the first and second peaks of g r( ) is
considered as the average nearest neighbor distance. A crystallite is
defined by a central atom under consideration and the nearest neigh-
bors, and used for subsequent orientation analysis.

The implementation of atom-scale orientation mapping and texture
analysis consists of three steps. (i) Calculate the direction vectors of
three crystallographic axes (ai) for each crystallite to obtain an ortho-
gonal rotation matrix, R. (ii) For each crystallite k, compute its or-
ientation mapping vector q kom, and Euler angles from the rotation
matrix. (iii) Visualize the orientation mapping by coloring each atoms
with orientation mapping vector as RGB scheme, and calculate the
orientation distribution functions from the Euler angles.

2.1. Rotation matrix

The orientation of a crystal with respect to a reference coordinate
system is represented by a three-dimensional orthogonal rotation ma-
trix, R [1,46]. Once the rotation matrix is calculated, orientation
mapping vectors q kom, and Euler angles can be computed from the ro-
tation matrix, and then the orientation maps and orientation distribu-
tion functions can be obtained. A similar way to determine rotation
matrix was used previously by Song and Hoyt [47]. In their work, grain
misorientation or interphase boundaries are quantitatively identified by
the rotation axis and the rotation angle between grains deduced from a
rotation matrix. However, orientation mapping vectors and Euler an-
gles, which can be used for visualizing orientations of individual grains
and statistical analysis of orientations, are largely lacking in literature.

For cubic systems, R is defined as the misorientation between three
crystallographic axes (a a a: [1 0 0] , : [0 1 0] , and : [0 0 1]1 c 2 c 3 c), and
those of the sample coordinate system, i.e., rolling (RD: [100]s),
transverse (TD: [0 1 0]s), and normal (ND: [0 0 1]s) directions (Fig. 1).

Here α β,i i, and γi (i = 1, 2, and 3) are defined as direction angles
between ai and RD, TD, and ND, respectively, and the rotation matrix,
R, is expressed alternatively in terms of direction cosines as
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where ̂ai is the unit vector of ai.
For HCP crystals, the hexagonal crystal coordinate system is trans-

formed to the orthogonal coordinate system, and the three crystal-
lographic axes in the orthogonal coordinate system,
a a a: [1 0 0] , : [0 1 0] , and : [0 0 1]1 c 2 c 3 c, correspond to [21 1 0]c,
[0 11 0]c, and [0 0 0 1]c directions in the hexagonal system, respec-
tively. Then the orthogonal rotation matrix R for HCP crystals can be
obtained from Eqs. (2) and (3).

2.2. Crystallographic orientation

In order to calculate rotation matrix at the atomic scale, a key step is
to determine crystallographic orientation of a crystallite formed by an
atom under consideration and in crystals. This process depends on
crystal lattice system. FCC, BCC and HCP are three most common
crystal systems with different stacking sequences, atomic packing fac-
tors, coordination numbers (nCN), and symmetry (Fig. 2(a)–(c)), and are
thus considered here. An atom under consideration and its nearest
neighbors form a crystallite. The crystal orientation of this crystallite is
obtained via analyzing the directions between the central atom and its
nearest neighbors.

For a perfect FCC lattice, we define a set of 12 vectors pointing from
the central atom to its 12 nearest neighbors, i.e., the 〈 〉1 1 0 direction
vectors [41]. Among the 12 vectors, the vector forming the smallest
angle with [1 0 1]s is defined as [1 0 1]c. We then choose the vector which

Fig. 1. Definition of crystal and sample coordinate systems for cubic crystals,
denoted with subscripts c and s, respectively. The crystal coordinate system
axes (red) are a a a: [1 0 0] , : [0 1 0] , and : [0 0 1]1 c 2 c 3 c, and the sample or re-
ference system axes are (black) RD ([1 0 0]s), TD ([0 1 0]s), and ND ([0 0 1]s).
α β,i i, and γi are defined as the direction angles between ai and RD, TD, and ND,
respectively. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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