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Object kinetic Monte Carlo and finite-element calculations have been used to calculate the sink strength of low-
angle symmetric tilt grain boundaries (STGBs) in Cu. It is shown that saddle point anisotropy of vacancies
increases their absorption by STGBs, making these interfaces nearly neutral sinks. The continuous model, which
includes point defect anisotropy at saddle point, is able to reproduce OKMC calculations, provided the exact
value of the diffusion tensor is retained. The use of elastodiffusion tensor is not valid, due to the large strains
(e ~ 1072) created by STGBs. The low numerical cost of the continuous model could allow for a more systematic

investigation of radiation tolerance due to interfaces.

1. Introduction

In inhomogeneous materials subjected to irradiation, interphase and
grain boundaries between crystalline solids are known to be sinks for
point defects such as vacancies and self-interstitial atoms (SIAs). The
diffusion and absorption of supersaturated point defects at interfaces
can alter their structure, for example contributing to void growth [1]
and solute enrichment or depletion [2]. Such evolutions at interfaces
can degrade the mechanical properties of materials [3] and accelerate
the failure under irradiation. Conversely, it has been observed that the
presence of a high density of interfaces could reduce the radiation in-
duced damage in the matrix [4,5]. The ability of interfaces to remove
point defects from the matrix is rationalized in terms of “sink effi-
ciency” [6]. It has been shown that the sink efficiency depends on the
interface type [7], thus on the interface structure and energy. For grain
boundaries, different sink efficiencies have been inferred for different
misorientations, based on the width of void-denuded zones [8]. Na-
nostructured materials with “super-sink” interfaces may therefore be
optimally designed in order to dramatically enhance radiation tolerance
[9].

Sink efficiencies depend on how defects interact with the interface
when they reach it [10,11]. Usually, to determine sink efficiencies it is
assumed that defects perform a random walk in the matrix [12,7].
However, the elastic interaction between the interface and defects can
bias the atomic jumps and increase the flux of defects. Such elastic
effects can be quantified by the “sink strength” of the interface for a
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given type of defect. Sink strengths of low-angle grain boundaries have
been calculated by King and Smith [13], and more recently by Jiang
et al. [14]. In these works, point defects were considered as isotropic
elastic inclusions. This approximation permits to reduce the sink
strength calculation to the solving of a single partial differential equa-
tion (PDE) on the defect concentration. To account for the different
interstitial and vacancy configurations at stable and saddle points, an
object kinetic Monte Carlo (OKMC) was used [15]. In this study it was
shown that the anisotropy of point defects at their saddle point, which
contributes to elastodiffusion [16], is responsible for a significant en-
hancement of the sink strength. OKMC simulations, however, are
somewhat less efficient than the low-cost and practical finite difference
or finite-element method (FEM) solving of PDEs. These methods could
also be preferable for rapidly scanning over many different interfaces in
computational strategies for tailoring composite materials.

In order to systematize the calculation of sink strength of interfaces,
an important question is to know whether a continuous model can
achieve the same level of accuracy as OKMC. We will prove that this is
indeed the case, provided the local diffusion tensor under stress is not
approximated by using the elastodiffusion tensor. The validity and the
accuracy of the continuous approach are shown in the case of low-angle
symmetric tilt grain boundaries (STGBs) in Cu.

2. Methods for sink strength calculations

Low-angle STGBs in Cu with various misorientations 6 are studied.
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We suppose that values of 6 are low enough to consider that defects can
only be absorbed at the discrete dislocations [12]. Elastic fields created
by such interfaces are generated using either isotropic or anisotropic
elasticity. For isotropic elasticity, a closed form expression for the dis-
placement and distortion fields exists [17]. Such an expression cannot
(in general) be explicitly written for general anisotropic elastic cases. In
the present work, the complete interface strain fields are determined by
combining and solving the quantized Frank-Bilby equation with ani-
sotropic elasticity theory [18], consistently with the misorientation and
interface plane orientation and with vanishing far-field stresses. The
interfacial dislocation-based method has been successfully validated
through comparisons with experiments for [0 0 1] tilt boundaries [18]
and with atomistic simulations for heterophase interfaces [19].

The interaction energy between a point defect and a dislocation-
induced strain field ¢; reads [20,21]

EeBk(r) = = ) PYSkey(r),
ij 1)

where Pij./ sk is the elastic dipole tensor for defect configuration k. For
example, it can be [100], [010] or [00 1] for an SIA at its stable posi-
tion. Superscripts ‘e’ or ‘s’ indicate whether the dipole tensor corre-
sponds to a stable (equilibrium) or saddle position, respectively. Elastic
dipole tensors were obtained previously by first principles calculations
for SIAs and vacancies in Cu at both stable and saddle positions [15].

To calculate the sink strengths of interfaces, two different methods
are used and compared. The first one is an OKMC approach [15,22],
which can naturally handle various defect configurations, both at stable
and saddle positions. It accounts for the atomistic details of migration.
Since defects are not allowed to reorient on their site in our simulations,
in agreement with experimental observations [23] and numerical cal-
culations [24], we take into account the fact that a given defect con-
figuration will only be coupled to three migration channels (out of four)
with specific configurations [25]. OKMC will be used to produce re-
ference results.

The second method relies on the FEM solving of a PDE on a variable
linked to the concentration field, which is viewed as a significant
simplification of a complex diffusion problem and also provides an
opportunity for rigorous validation with the first resource-intensive
calculations. The continuous model of transport relates the local flux of
defects to the concentration gradient. Due to the existence of three
stable configurations for SIAs, in principle three different and coupled
concentration fields must be followed. However, as noted in Refs.
[26,16], it is reasonable to suppose that thermal equilibrium for the
different configurations is quickly achieved. In the present study,
equilibrium cannot come from an on-site reorientation, which is not
enabled in the present OKMC model. Instead it should be a consequence
of the migration of defects and of the detailed balance. The assumption
of thermal equilibrium can be checked in OKMC simulations. It was
shown that if this condition if fulfilled, the flux can be simply written as
[16]

J(@r) = -D (r)Vu(r), ®)

where u(r) = Zizl uk(r) at position r, and the renormalized con-
centration of configuration k (k = 1, ...,s) is given by

uk(r) = ck(r)exp(BE®K(r)). 3

Here c*(r) is the concentration of configuration k and 8 = 1/kgT,
with kg the Boltzmann constant and T the temperature. Because the
thermal equilibrium between all configurations is assumed, for two
specific and distinct configurations k and [ we have
ck(r)/c(r) = exp(—BES*(r))/exp(—BE!(r)) and u* is independent of k.
The concentration of each configuration is thus related to u through

k _l _RF&k
ct(r) = Su(r)eXp( BESH(r)). )

The renormalized diffusion tensor is given by [16]
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Fig. 1. Decomposition of the computational domain boundaries to compute the
sink strength of a low-angle STGB (see text for details).

By(r) = 39 Y, hibyexp(~BE*H(r).
h ()
The summation is on the different possible jumps h. In the present
analysis, we have used ES" instead of ES* to identify the interaction
energy of the defect at saddle point for a particular jump h, since only
one saddle configuration is associated to a given jump. In Eq. (5) the
jump frequency without any elastic interactions is v = vyexp(—BE™),
with E™ the migration energy and v, the attempt frequency, which does
not depend on the jump h. Factor « is equal to 1 for vacancies and 2/3
for (1 0 0)-split dumbbells SIAs.
At stationary state, the continuity equation on the total re-
normalized concentration of defects reads

G-V-J =0, (6)

where G is the creation rate and J is defined by Eq. (2).

This equation is solved for the two-dimensional system shown in
Fig. 1. Sinks are cylinders of radius r. = 2b centered at dislocations,
where b is the Burgers vector (b = 0.362 nm). Two grain boundaries are
separated by h = 70 nm, so that elastic fields produced by each grain
boundary do not overlap for all values of 6 considered. The distance d
between dislocations along the GB is related to 6 through
d = b/(2sin(6/2)). Boundary conditions are

u(r)=0 Vrelp @
u(d, y) =u(,y) (8
Dvu-dS=0 on Tn(i=1,2,3). 9)

We have assumed that the system can be considered as a two-di-
mensional system, ie with only flux components along x and y. Even for
a system which is structurally invariant along one direction, fluxes can
appear in the direction of invariance (although the total flux is zero),
due to the anisotropy of defects at their saddle position [22]. We now
justify this hypothesis.

If present, such fluxes are due to cross-terms Dy and Dj, which
couple du/0x and du/dy to J,. It is straightforward to check that terms
which contribute to D3, and Ds, in Eq. (5) are not zero. However, for a
given jump h = (hy, hy, h;) with an elastic dipole (in Voigt notation)
P= (Pu, Py, Ps3, Pr3, P, Plz), there exists ajump n = (hl, hz, —l’l3) with
an associated elastic dipole P’ = (Pyy, Py, P33, —P>3, —P;1, P13). There-
fore, owing to Eq. (1) the defect has the same saddle point energy for
the two jumps if &3 = &; = 0, which is precisely the case in the present
low-angle STGBs. Contributions to 531 and 532 cancel each other out, so
that D3, = D3, = 0 and J, is zero.

The problem given by Egs. (2) and (6) with Egs. (7)—(9) can be
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