
Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier.com/locate/commatsci

Matminer: An open source toolkit for materials data mining

Logan Warda,b, Alexander Dunnc,d, Alireza Faghaniniac, Nils E.R. Zimmermannc, Saurabh Bajajc,e,
Qi Wangc, Joseph Montoyac, Jiming Chenf, Kyle Bystromd, Maxwell Dyllag, Kyle Charda,b,
Mark Astad, Kristin A. Perssonc, G. Jeffrey Snyderg, Ian Fostera,b, Anubhav Jainc,⁎

a Computation Institute, University of Chicago, Chicago, IL 60637, United States
bData Science and Learning Division, Argonne National Laboratory, Argonne, IL 60439, United States
c Lawrence Berkeley National Laboratory, Energy Technologies Area, 1 Cyclotron Road, Berkeley, CA 94720, United States
d Department of Materials Science and Engineering, University of California, Berkeley CA 94720, University of California, Berkeley, CA 94720, United States
e Citrine Informatics, Redwood City, CA 94063, United States
fDepartment of Chemical Engineering, University of Illinois, Urbana, IL 61801, United States
g Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, United States

A R T I C L E I N F O

Keywords:
Data mining
Open source software
Machine learning
Materials informatics

A B S T R A C T

As materials data sets grow in size and scope, the role of data mining and statistical learning methods to analyze
these materials data sets and build predictive models is becoming more important. This manuscript introduces
matminer, an open-source, Python-based software platform to facilitate data-driven methods of analyzing and
predicting materials properties. Matminer provides modules for retrieving large data sets from external data-
bases such as the Materials Project, Citrination, Materials Data Facility, and Materials Platform for Data Science.
It also provides implementations for an extensive library of feature extraction routines developed by the ma-
terials community, with 47 featurization classes that can generate thousands of individual descriptors and
combine them into mathematical functions. Finally, matminer provides a visualization module for producing
interactive, shareable plots. These functions are designed in a way that integrates closely with machine learning
and data analysis packages already developed and in use by the Python data science community. We explain the
structure and logic of matminer, provide a description of its various modules, and showcase several examples of
how matminer can be used to collect data, reproduce data mining studies reported in the literature, and test new
methodologies.

1. Introduction

Recently, the materials community has placed a renewed emphasis
in collecting and organizing large data sets for research, materials de-
sign, and the eventual application of statistical or “machine learning”
techniques. For example, the mining of databases comprised of density
functional theory (DFT) calculations has been used to identify materials
for batteries [1,2], to aid the design of metal alloys [3,4], and for many
other applications [5]. Importantly, such data sets present new oppor-
tunities to develop predictive models through machine learning tech-
niques: rather than designing and programming such models manually,
such techniques produce predictive models by learning from a body of
examples. Machine learning models have been demonstrated to predict
properties of crystalline materials much faster than DFT [6–9], estimate
properties that are difficult to access via other computational tools
[10,11], and guide the search for new materials [12–16]. With the

continued development of general-purpose data mining methods for
many types of materials data [17–19] and the proliferation of material
property databases [20], this emerging field of “materials informatics”
is positioned to have a continued impact on materials design.

In this paper, we describe a new software library, “matminer”, for
applying data-driven techniques to the materials domain. The main
roles of matminer are depicted in Fig. 1: matminer assists the user in
retrieving large data sets from common databases, extracts features to
transform the raw data into representations suitable for machine
learning, and produces interactive visualizations of the data for ex-
ploratory analysis. We note that matminer does not itself implement
common machine learning algorithms; industry-standard tools (e.g.,
scikit-learn or Keras) are already developed and maintained by the
larger data science community for this purpose. Instead, matminer's
role is to connect these advanced machine learning tools to the materials
domain.

https://doi.org/10.1016/j.commatsci.2018.05.018
Received 16 April 2018; Accepted 7 May 2018

⁎ Corresponding author at: Lawrence Berkeley National Laboratory, Energy Technologies Area, 1 Cyclotron Road, Berkeley, CA 94720, United States.
E-mail addresses: loganw@uchicago.edu (L. Ward), AJain@lbl.gov (A. Jain).

Computational Materials Science 152 (2018) 60–69

0927-0256/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09270256
https://www.elsevier.com/locate/commatsci
https://doi.org/10.1016/j.commatsci.2018.05.018
https://doi.org/10.1016/j.commatsci.2018.05.018
mailto:loganw@uchicago.edu
mailto:AJain@lbl.gov
https://doi.org/10.1016/j.commatsci.2018.05.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.commatsci.2018.05.018&domain=pdf


Matminer solves many problems encountered when conducting
data-driven research. For example, learning the Application
Programming Interface (API) for each data source and preprocessing
retrieved data adds significant complexity to the task of building new
machine learning models. Matminer provides a simplified interface that
abstracts the details of these API interactions, making it easy for the
user to query and organize large data sets into the standard pandas [21]
data format used by the Python data science community. Furthermore,
as we will further discuss later in the text, matminer implements a suite
of 47 distinct feature extraction modules capable of producing thou-
sands of physically relevant descriptors that can be leveraged by ma-
chine learning algorithms to more efficiently determine input-output
relationships. Although many such feature extraction methods are re-
ported in the literature, many lack an open source implementation.
Matminer not only implements these domain-specific feature extraction
methods but provides a unified interface for their use, making it trivial
to reproduce or compare (and, eventually, extend) these methods. Fi-
nally, matminer contains many pre-defined recipes of visualizations for
exploring and discovering different data relationships. In aggregate,
these features allow for cutting edge materials informatics research to
be conducted with a high-level, easy-to-use interface.

We note that prior efforts have produced software for computing
features for materials (e.g., Magpie[22,23], pyMKS [24]), building deep
learning models of molecular materials (e.g., deepchem [25,26]), pro-
viding turnkey machine learning estimates of various properties, or
integrating machine learning with other software [27–29]. In contrast
to these prior efforts (which have their own intended applications and
scope), matminer is designed to interact and integrate with standard
Python data mining tools such as pandas and scikit-learn [30], imple-
ments a library of feature generation methods (“featurizers”) for a wide
variety of materials science entities (e.g., compositions, crystal struc-
tures, and electronic structures), and includes tools to assist with data
retrieval and visualization.

The source code for the version of matminer described in this
manuscript (version 0.3.2) and examples of its use are available as
supplementary information. Updated versions are regularly published
to the Python Package Index (https://pypi.python.org/pypi/matminer).
The actively developed version of matminer is available on GitHub at
https://github.com/hackingmaterials/matminer. Matminer also in-
cludes a dedicated repository of examples and tutorials (many in an

interactive, runnable Jupyter notebook format [31]) for using the data
retrieval, featurization, and visualization tools, located at https://
github.com/hackingmaterials/matminer_examples. Full documenta-
tion for matminer is also available from https://hackingmaterials.
github.io/matminer/. The matminer code currently contains 109 unit
tests to ensure the integrity of the code, which are run automatically
with each code commit through a continuous integration process. A
help forum for matminer is available at: https://groups.google.com/
forum/#!forum/matminer.

2. Software architecture and design principles

A guiding principle of matminer is to integrate domain-specific
knowledge and data about materials into larger ecosystem of Python
data analysis software. The Python community has developed a rich
suite of interoperable tools for data science, which are broadly used
across the data science community and occasionally known as the
“PyData” or “SciPy” stacks [32]. These libraries include NumPy and
Scipy [33], which provide a suite of high-performance numerical
methods, and Jupyter [31], which facilitates interactive data analysis.
Matminer is designed to allow users to leverage these professional-level
data science libraries for materials science studies.

A central tool in the PyData stack is the pandas DataFrame, which is
a tabular representation of data similar to (but more powerful than) a
virtual spreadsheet [21]. Pandas makes it possible, for example, to load
a data set and perform many common data post-processing procedures,
such as filtering, grouping, joining, computing rolling averages, and
producing descriptive statistics. Additionally, data formatted into a
pandas DataFrame can be easily used with other Python data analysis
libraries, such as scikit-learn, numpy, and matplotlib. DataFrames can
also be visualized as interactive tables within Jupyter notebooks. They
can also be serialized into multiple formats to allow them to be archived
and shared. Because of all the benefits and features that are achieved by
transforming data into the DataFrame format, matminer's data retrieval
API automatically formats data that it retrieves from external sources
into this format. Data retrieved through matminer is thus immediately
ready for a wide variety of tasks, including data cleaning, data ex-
ploration, data transformations, data visualization, and machine
learning. As described in later sections, all data extraction, featuriza-
tion, and visualization tools in matminer can generate or operate on

Fig. 1. Overview of the capabilities of matminer. Matminer aids the user in constructing a data pipeline for materials informatics and is composed of three main
components: (1) tools for retrieving data from a variety of materials databases, (2) tools for extracting features (or descriptors) from materials data, and (3) re-useable
and customizable recipes for visualizing materials data. Data is retrieved and processed in a way that makes it simple to integrate matminer with external machine
learning libraries such as scikit-learn and Keras.

L. Ward et al. Computational Materials Science 152 (2018) 60–69

61

https://pypi.python.org/pypi/matminer
https://github.com/hackingmaterials/matminer
https://github.com/hackingmaterials/matminer_examples
https://github.com/hackingmaterials/matminer_examples
https://hackingmaterials.github.io/matminer/
https://hackingmaterials.github.io/matminer/
https://groups.google.com/forum/#!forum/matminer
https://groups.google.com/forum/#!forum/matminer


Download English Version:

https://daneshyari.com/en/article/7957062

Download Persian Version:

https://daneshyari.com/article/7957062

Daneshyari.com

https://daneshyari.com/en/article/7957062
https://daneshyari.com/article/7957062
https://daneshyari.com

