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A B S T R A C T

A comprehensive, critical study of the vibrational, thermodynamic and thermoelastic properties of bcc iron is
presented, using well established semi-empirical embedded-atom method potentials available in the literature.
Classical molecular dynamics simulations are used to address temperature effects, where dynamical matrices are
constructed as a time average of the second moment of the atomic displacements. The ′C C C, ,11 44 elastic con-
stants are then obtained from the sound velocities along high symmetry directions in reciprocal space. Results
are compared to ultrasonic measurements and highlight the limitations of the potentials considered here in
describing thermoelastic properties.

1. Introduction

Iron is a transition metal whose relative abundance in the universe
is a by-product of stellar activity. It can be found in large quantities in
liquid and solid forms in planetary cores like in the case of earth (85%
of the composition [1]), thus characterizing the propagation of seismic
waves in the interior of our planet. It is also the major constituent of
steels which are still of fundamental interest for our economic pro-
cesses. The complexity of its phase diagram, mainly driven by the co-
operative vibrational and magnetic contributions to the free energy
[2,3], makes this element particularly challenging to describe via
computer simulations. This is valid especially at high temperatures,
where these cooperative effects determine a dramatic change in the
structural properties of the system. At the Curie temperature of
∼1043 K, iron turns from a ferromagnet into a paramagnet experiencing
a second order transition ( →α β). This transition is then followed at
higher temperatures by two other structural transitions, namely a
bcc→ fcc ( →β γ) and a fcc→ bcc ( →γ δ), before melting at ∼1810 K.

Empirical potentials have been extensively tested and used to study
the thermodynamic and mechanical properties of iron and its alloys,
including phase stability and structural martensitic transitions [4–8],
and a vast class of point- or extended defects such as vacancies [9,10],
interstitials [11–13], dislocations [14–19], or tip-cracks with brittle to
ductile transitions [20–22]. The study of these classes of defects re-
quires the use of accurate potentials that are capable of reproducing

plastic, non-elastic and elastic properties at the same time. In fact, it is
known that extended defects induce long-range residual stresses that
can directly influence structure and dynamics of their own core-defect
region [20,23]. While zero-temperature experimental equilibrium vo-
lume and elastic constants are typically well reproduced by most of the
embedded-atom method (EAM) potentials available in the literature
(due to the fact that, commonly, they are explicitly included in the
fitting datasets together with other standard quantities such as lattice
parameters, cohesive energies, and defect formation energies from ex-
periments and calculations), there are only a few studies which have
been performed to analyze carefully the performance and the accuracy
of this kind of potentials at increasingly high temperatures [24,25]. For
iron in particular, we are aware of such kind of study for a recent
machine learning potential only [26]. For this reason, in this work we
perform an extended investigation of the thermo-mechanical response
of a selection of popular EAM potentials [27–30] fitted on experimental
and ab-intio data. The analysis is performed by means of classical
molecular dynamics (MD) calculations throughout the entire range of
stability of the α-phase of iron, and can be considered a stringent test
for the validation of a potential. Very recently [31], the high pressure/
high temperature phase diagram of iron has been derived from a set of
EAM potentials, including some of the EAM potentials investigated in
our study. The conclusion of Ref. [31] is that the accuracy of the EAM
potentials depends strongly on the fitting set (i.e. including or not liquid
configurations).
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The paper is organized as follows: in Section 2 we describe the
methodology used to calculate thermodynamic quantities, phonons and
elastic constants. In Section 3 we analyze convergence issues associated
to the methodology adopted for the calculation of the elastic constants.
The results are then compared with experimental data available in lit-
erature and discussed in Section 4. Summary and conclusions are re-
ported in Section 6.

2. Methods and details of the calculations

EAM potentials [32] are a class of semi-empirical interatomic po-
tentials constructed to provide an improved description of metallic
bonding between atoms, compared to that of simple pair-wise interac-
tions. The analytic functional form of such potentials shares similarities
with that of the glue model [33], the Finnis-Sinclair [34] approach and
effective-medium theory [35]. Specifically, the potential energy of an
EAM atom i embedded in a generic atomic environment is given by
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where rij is the distance between neighboring atoms i and j (j within a
sphere centered around i with a local cutoff radius rcut), ϕ r( ) is a pair-
wise potential term, and F a many-body convex nonlinear embedding
function depending on an effective local charge density function

= ∑ ≠n r ρ r( ) ( )i i j ij due to the atoms surrounding i within a radial dis-
tance rcut . Extensive reviews of the EAM approach can be found in Refs.
[35,37]. In this work, we focus our attention on the Mendelev03 [27],
Meyer98 [28], Ouyang12 [29] and Marchese87 [30] EAM potential
parameterizations, which have proven to be successful in the descrip-
tion of a wide range of crystal and defect properties of iron and its
alloys (cohesive energy, 0 K elasticity, mono-vacancy formation en-
ergy). These potentials differ in the details of the functional form used
to describe the embedding, in the pair and effective charge-density
functions, and also in the different information included in the datasets.

In particular the Mendelev03 potential (potential 2 in Ref. [27]) has
been fit to both experimental data (including lattice spacing of bcc and
fcc at 0 K, bcc cohesive energy, unrelaxed bcc vacancy formation en-
ergy, bcc to fcc crystals energy difference, bcc and fcc interstitial for-
mation energies, liquid density) and to the forces obtained from a few
snapshots of an ab initio MD simulation of liquid, non-magnetic iron.
The Meyer98 potential has been fit to various experimental data
sources, including bcc lattice constant, sublimation energy, elastic
constants, bcc-to-fcc energy differences, vacancy formation energy and
selected phonon frequencies. The Marchese87 potential has been gen-
erated starting from an early work by Finnis and Sinclair, and has been
fit to experimental cohesive energy, equilibrium volume and elastic
constants, in addition to the potential energy along the vacancy mi-
gration barrier, but they don’t give details of the calculation. Finally,
the Ouyang12 EAM potential has been fitted to experimental data, in-
cluding bcc/bcc lattice parameters, elastic constants, cohesive energies,
vacancy formation energies in bcc/fcc, bond-length and dissociation
energy of the Fe dimer.

Regardless of the parameterization, low-temperature experimental
elastic constants of bcc iron have always been included in the training
protocol. These potentials are therefore expected to reproduce such
quantities at zero temperature and/or in the low-temperature regime.
However, no systematic analysis has been performed to verify accuracy
at finite temperature in the whole experimental temperature range of
stability of the α (0→ 1043 K) and β (1043→ 1185 K) phases, 1185 K
being the experimental melting temperature. In order to get a glimpse
on the high-temperature behavior of the four potentials, we calculated
their melting temperature using the two-phase coexistence method.2

The melting temperatures are the following: ±1768 16 K (Mendelev03),
±2120 17 K (Meyer03), ±2404 20 K (Marchese87) and ±2276 22 K

(Ouyang12). From these results, the Mendelev03 potential, which has
been fitted also to the properties of the liquid, provides the best de-
scription of melting of solid iron.

The strategy adopted to calculate finite-temperature elastic con-
stants is based on molecular dynamics (MD) simulations:

1. We first compute the thermal expansion from constant pressure MD
simulations, and extract the volumetric/linear thermal expansion
coefficient α T α T( )/ ( )V L and specific heat at constant pressure C T( )P .

2. Second, we calculate the phonon spectrum for a number of tem-
peratures at their respective calculated equilibrium volumes, using
the time average of the second moment of atomic displacements.

3. Then, we compute the C C,11 44 and ′C elastic constants as a function
of temperature from the long-wavelength limit of the finite-tem-
perature phonon dispersions. We derive the C12 elastic constant and
bulk modulus B from standard relationships for cubic crystals.

We now describe these steps in detail. The equilibrium volumes are
obtained performing a set of constant pressure/temperature (NPT) runs
at vanishing external pressure, at a temperature going from 100 to
1200 K with increments of 100 K. The pressure is controlled through a
Parrinello-Rahman barostat [38] while a Nose–Hoover chain thermo-
stat [39] is used to keep constant the average temperature. The equa-
tions of motion used to sample trajectories in the position-velocity
phase-space of the NPT ensemble are those of Shinoda [40], that
combine the Martyna, Tuckerman and Klein correction [41] with the
strain energy proposed by Parrinello and Rahman [38], and are solved
using the time-reversible measure-preserving Verlet algorithm derived
by Tuckerman [42] as implemented in the LAMMPS [43] package. The
initial configuration of each MD run consists of a 10×10×10 cubic
supercell with periodic boundary conditions (PBCs) containing 2000
atoms with slightly randomized displacements from the perfect bcc
structure. The velocities are initialized according to a Maxwell-Boltz-
mann distribution. During the simulations, the time-step is fixed at 1 fs,
and the relaxation times of the barostat and thermostats are set to be
1 ps and 0.1 ps, respectively. Each simulation is carried out for 10
million steps, equivalent to 10 ns. The first 0.5 ns are used for ther-
malization and equilibration of the system, while the remaining 9.5 ns
are used for accumulating thermodynamics averages. The simulation
length and size are chosen to ensure the convergence of the relevant
thermodynamic quantities. The volumetric and linear coefficients of
thermal expansion are obtained from the temperature derivative of a
cubic spline interpolation of the average equilibrium volumes calcu-
lated from the MD runs according to Eq. (2),
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Similarly, according to Eq. (3), the specific heat is obtained as a tem-
perature derivative of a cubic spline interpolation of the calculated
average enthalpy H,
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The phonon dispersions at finite temperature are obtained directly
through MD runs using the FixPhonon fix by Kong [44] implemented
into LAMMPS [43]. In this method, the dynamical matrix is obtained
through Green’s functions [45] calculated as time-averaged second
moments of the atomic displacements, assuming thermal equilibrium

2We prepared a 8000 atoms sample, with two solid (bcc)-liquid interfaces, equilibrated

(footnote continued)
at different temperature, and monitored the movement of the solid–liquid interfaces. This
way, we obtained a rough estimate of the melting temperature. Finally, we performed a
constant-enthalpy run and obtained the melting point as the average temperature of the
system.
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