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A B S T R A C T

Traditionally, material identification is performed using global load and displacement data from simple
boundary-value problems such as uni-axial tensile and simple shear tests. More recently, however, inverse
techniques such as the Virtual Fields Method (VFM) that capitalize on heterogeneous, full-field deformation data
have gained popularity. In this work, we have written a VFM code in a finite-deformation framework for cali-
bration of a viscoplastic (i.e. strain-rate dependent) material model for 304L stainless steel. Using simulated
experimental data generated via finite-element analysis (FEA), we verified our VFM code and compared the
identified parameters with the reference parameters input into the FEA. The identified material model para-
meters had surprisingly large error compared to the reference parameters, which was traced to parameter
covariance and the existence of many essentially equivalent parameter sets. This parameter non-uniqueness and
its implications for FEA predictions is discussed in detail. Finally, we present two strategies to reduce parameter
covariance – reduced parametrization of the material model and increased richness of the calibration data –
which allow for the recovery of a unique solution.

1. Introduction

Modeling material and component behavior using finite-element
analysis (FEA) is critical for modern engineering. One critical – yet
often under-appreciated – input into FEA is a material model, which
describes the constitutive relationship between the stress induced in a
specimen as a function of loading conditions (such as elastic strain,
plastic strain, strain rate, and temperature), as well as material prop-
erties (such as Young’s modulus, Poisson’s ratio, yield stress, and
hardening). While often called “material properties”, these quantities
are actually better designated as model parameters. Depending on the
type of material model utilized, the model parameters may or may not
have physical meaning. Even in physics-inspired models, the para-
meters in the end are not actually material properties, but simply fitting
parameters for the model that approximate the material behavior. The
process of identifying model parameters is also called model calibra-
tion, material identification or material characterization.

Historically, experimental data of material behavior was limited to
global measurements, such as applied load and extension. As a result,
test specimens for model calibration typically had simple geometries
such as tensile dog bones or torsion cylinders that are statically de-
termined with homogeneous stress states. These simple experiments
have the benefit of being relatively easy to perform, and trends in the

data are often easy to identify manually. A main disadvantage, though,
is that uni-axial stress states do not reflect real-world loading condi-
tions; models calibrated using simplistic, uni-axial data are routinely
extrapolated and expected to predict material behavior in complex,
multi-axial loading conditions. Additionally, to calibrate a complex
material model, many experiments are required at different strain rates,
temperatures, orientations, etc. making model calibration time-con-
suming and expensive.

The development and maturity of full-field diagnostics, such as
Digital Image Correlation (DIC), however, have opened the door to
more sophisticated methods of material model calibration. The avail-
ability of rich, full-field deformation data allows specimen geometries
to be complex, inducing heterogeneous stress states and a range of
loading conditions (e.g. a range of strain-rates) in a single specimen.
Thus, material models can be calibrated using data that more closely
resembles the complex loading conditions a component of interest
might experience. Additionally, by inducing a range of loading condi-
tions in a single test, the number of tests required to calibrate complex
material models is reduced.

There are many inverse techniques that capitalize on full-field de-
formation data for model calibration, such as the finite element model
updating method, the constitutive equation gap method, the virtual
fields method, the equilibrium gap method, and the reciprocity gap
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method [1]. This work focuses on the virtual fields method (VFM),
which is based on the principle of virtual work [2]. Since its original
development for linear elastic material models, VFM has been expanded
to nonlinear plasticity models for metals [3–9], with many works fo-
cusing on identifying anisotropic plasticity models [10–12] or visco-
plastic (i.e. rate-dependent) models [13–15]. One main benefit of VFM
over the finite element model updating method (FEMU) is that VFM is
significantly more computationally efficient than FEMU. However, a
significant drawback is that VFM requires deformation measurements
throughout the entire volume of the test specimen, whereas FEMU ac-
cepts deformation measurements on a subset of the test specimen (e.g.
on the surface of a specimen); this point will be discussed in more detail
throughout this article.

As computing resources become more powerful and engineers seek
to design more complex components with reduced performance mar-
gins, high-fidelity models (both in terms of the material model and the
finite-element model) become more critical. However, increased com-
plexity of the material model makes calibration difficult as model
parameters are often no longer independent [16]. For instance, Sale-
hghaffari et al. [17] describe a physics-based approach to calibrating
the Bammann-Chiesa-Johnson (BCJ) viscoplastic model in order to lock
down one parameter at a time in a sequential manner, thus leading to a
unique solution. Notta-Cuvier et al. [15] observed parameter covar-
iance in the Johnson-Cook material model when using VFM to calibrate
the model. Grama et al. [14] discussed in detail difficulties of finding a
unique set of parameters due to insensitivity of the cost function to each
of the parameters. Ogden et al. [18] found that different sets of model
parameters obtained from different initial guesses led to significant
differences in the solutions of a boundary-value problem using the
different identified parameter sets.

This work focuses on identifying model parameters for a viscoplastic
material model for 304L stainless steel using VFM and discusses para-
meter covariance and non-uniqueness in depth. The basic steps in VFM
are outlined in Section 2.1, while details of the kinematics calculations,
stress reconstruction algorithms, and VFM implementation in a finite-
deformation framework are reserved for Appendices A–C. The material
model and specimen geometry are described in Sections 2.2 and 3.1
respectively. Synthetic experimental data was generated using Finite
Element Analysis (FEA) as described in Sections 3.2 and 3.3, and this
data was used to verify the VFM algorithms in Section 3.4. Sections 4.1
and 4.2 contain information on the optimization process while the
identified parameters are presented in Section 4.3. Covariance and non-
uniqueness of the parameters are discussed in Section 5, while strate-
gies to reduce parameter covariance are identified in Section 6. Lastly,
the article concludes in Section 7 with some ideas for improving ma-
terial models and model calibrations.

2. Background

2.1. Virtual Fields Method (VFM)

The original motivation for this work was to explore the potential of
using a single specimen of unique geometry, in which a range of strain
rates is induced in a single test, to calibrate a viscoplastic material
model. We selected VFM as our technique for model calibration
amongst other techniques that capitalize on full-field data because it is
less computationally expensive than finite-element updating, and be-
cause we had prior experience with VFM. For nonlinear material
models, the basic steps of VFM are outlined below, while specifics are
contained throughout this article.

1. Select a material model (Section 2.2) and specimen geometry
(Section 3.1).

2. Measure specimen deformation and applied load during testing
(Section 3.2).

3. Compute kinematic quantities (i.e. deformation gradient and rate of

deformation) from the full-field deformation measurements
(Appendix A).

4. Reconstruct the stresses according to the selected material model,
using an initial guess of model parameters, and the kinematic
quantities (Appendix B):

=σ g ξ Fσ t( ( ), , )f1 (1)

where σ is the Cauchy stress tensor, σf is the flow stress from the
viscoplastic material model, ξ is a vector representing the material
model parameters, F is the deformation gradient tensor, and t is
time.

5. Select one or more kinematically-admissible virtual velocity fields
(Appendix C.2).

6. Calculate the internal and external virtual power, Pint and Pext re-
spectively, as a function of time (Appendix C):

∫= − ∗F σF FP dV((det ) ): ̇int V
T

o (2a)

= ∗f vP ·ext (2b)

where Vo is the volume of the specimen in the reference configura-
tion, f is the measured resultant load, ∗v is the virtual velocity field
(chosen to be constant over the traction boundaries), and ∗F ̇ is the
virtual velocity gradient derived from the virtual velocity field. In
Eq. (2), the experimentally measured quantities are the deformation
gradient and the applied load, in the internal and external power
respectively; the material model (and thus the model parameters)
enters through the Cauchy stress.

7. Integrate the virtual powers over time and compute a cost function,
Φ, based on the balance of internal and external virtual work, Wint
and Wext (Appendix C):

∫=W P dtint int (3a)

∫=W P dtext ext (3b)

= −W WΦ ( )int ext
2 (3c)

8. Iterate on the model parameters until the cost function is minimized.

While the details of nonlinear VFM can be complex and are reserved
for the appendices, the key point is that the material model parameters
are embedded into the cost function through a series of cascading re-
lationships. The cost function is based on the internal virtual work,
which is computed from the reconstructed stresses, which are de-
termined in part through the flow stress, which is a function of the
material model parameters:

= σ ξg W σΦ ( ( ( ( ))))int f2 (4)

Therefore, by measuring the specimen deformation (over the volume of
the specimen) and applied load during an experiment, one is able to use
VFM to identify the material model parameters by minimizing the cost
function and balancing internal and external virtual work.

2.2. Viscoplastic material model

There are many possible material models to describe the viscoplastic
behavior of steel, such as the empirical Johnson-Cook model or the
physics-based Bammann-Chiesa-Johnson (BCJ) to name two options.
For simulations where material history is important, such as simula-
tions with varying temperature and load, an internal state variable
model such as BCJ can more accurately predict material behavior. Since
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