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A B S T R A C T

Curie temperature (Tc), the second order phase transition temperature, is also one of the important physical
properties of perovskite materials. It is a meaningful work to quickly and efficiently predict Tc of new perovskite
materials before doing a considerable amount of experimental work. In the work, SVM (support vector machine),
RVM (relevance vector machine) and RF (random forest) were employed to establish the prediction models of Tc
with the physicochemical parameters, respectively. The results reveal that the three models all have high pre-
cision and reliability. According to K-fold cross validation, the SVR model had better prediction performance
than the RVM and RF models. Meanwhile, the potential perovskite material with higher Tc was found by using
the SVR model integrated with the search strategy of genetic algorithm from the virtual samples. The methods
outlined here can provide valuable hints into the exploration of materials with desired property and can ac-
celerate the process of materials design.

1. Introduction

Perovskite-type oxides, commonly represented by ABO3, have been
considered as one of the most promising materials due to the applica-
tion of electronic and magnetic components such as multilayer capa-
citors and sensors [1,2]. In the properties of perovskite materials, Curie
temperature (Tc), also called Curie point, is the phase transition tem-
perature of ferroelectrics from ferroelectric phase to paraelectric phase.
So, it has an important influence on many applications of perovskite
materials such as erasing and writing new data of magneto-optical
storage medium, temperature control of soldering irons, and stabilizing
the magnetic field of tachometer generators against temperature var-
iation. In recent years, many researchers attempt to synthesize per-
ovskite materials with high Tc or higher Tc than room temperature.
Therefore, the effects of different doping elements on Tc of perovskite
materials have been widely reported [3,4]. Yu et al. [5] synthesized a
very complex perovskite material (Pb0.6Bi0.4Ti0.75Zn0.15Fe0.1O3) with
Tc of 978 K. However, it is a challenge to break through existing Tc in
that the compositions of perovskite materials and different doping ra-
tios of elements are highly complex.

At present, materials design with assistance of machine learning
methods, promoted by efforts such as the Materials Genome Initiative,

has become a research hotspot and an alternative approach to trial-and-
error experiments. Pilania et al. [6] constructed a model to predict the
bandgaps of double perovskites with the help of the machine learning
methods. Raccuglia et al. [7] used the resulting data of failed experi-
ments to train a machine-learning model to predict reaction success.
Xue et al. [8] provided an adaptive approach and employed the ma-
chine learning regression algorithms to find very low thermal hysteresis
(ΔT) NiTi-based shape memory alloys. Accordingly, it is no doubt that
machine learning methods can shorten the cycle of materials design and
realize controllable synthesis of materials.

In this work, a slew of machine learning methods was employed to
forage for the model with the optimal regression performance to predict
Tc of perovskite materials. To develop a really useful machine-learning
predictor for a material or biological system as reported in a series of
recent publications [9–23], one should observe the Chou's 5-step rule
[24]; i.e., making the following five steps very clear: (i) how to con-
struct or select a valid benchmark dataset to train and test the predictor;
(ii) how to formulate the samples with an effective mathematical ex-
pression that can truly reflect their intrinsic correlation with the target
to be predicted; (iii) how to introduce or develop a powerful algorithm
(or engine) to operate the prediction; (iv) how to properly perform
cross-validation tests to objectively evaluate the anticipated accuracy of
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the predictor; (v) how to establish a user-friendly web-server for the
predictor that is accessible to the public. The fifth step is the direction of
our future work that we will provide a web-server for the prediction
tools presented in this paper. Below, we are to describe how to deal
with these steps one-by-one.

The main outcomes of the paper are: the support vector regression
(SVR), relevance vector machine (RVM) and random forest (RF) models
were constructed with the better regression and generalization perfor-
mances according to the K-fold cross validation; meanwhile, the SVR
model has been verified that it has the stunning performance; finally, by
the means of the SVR model and genetic algorithm (GA), the candidate
perovskite material with perhaps higher Tc was provided to guide fu-
ture researches and experiments, and then accelerate search for per-
ovskite materials with higher Tc.

2. Methods

2.1. Dataset

We collected forty-seven perovskite materials from nine references
[25–33] as the dataset in Tab S1 of supplementary information. There
are several types of elements with different doping ratio both in A-site
and B-site of the samples in the dataset to provide the conditions for
following screening perovskite materials. The range of the target value

(Tc) is from 170 K to 380 K. Besides, there are twenty-one physico-
chemical parameters [34] (in Table 1) as the descriptors of perovskite
materials and the candidate inputs of the models.

2.2. SVR

SVR [35–37], a powerful methodology for solving problems in
nonlinear classification and regression, is also a supervised learning
algorithm that has been widely applied to various fields. It considers the
balance between empirical risk and expected risk, and then makes
computational model have the good prediction and generalization
performances.

Table 1
The twenty-one descriptors of perovskite materials.

No. Meanings Features

1 Weighted ionic radii of A-site (Å) Ra

2 Weighted ionic radii of B-site (Å) Rb

3 Weighted electronegativity Pauling of A-site χpa

4 Weighted electronegativity Pauling of B-site χpb

5 Tolerance factor t
6 Unit cell lattice edge (Å) αO3

7 Critical radii (Å) rc
8 Weighted ionization energy of A-site (kJ/mol) I1a
9 Weighted ionization energy of B-site (kJ/mol) I1b
10 Molecular mass (g/mol) M
11 Ratio of ionic radii of A-site to B-site Ra/Rb

12 Weighted electron affinity of A-site (eV) EAa

13 Weighted electron affinity of B-site (eV) EAb

14 The melt point of A-site metal (°C) tma

15 The melt point of B-site metal (°C) tmb

16 The boil point of A-site metal (°C) ta
17 The boil point of B-site metal (°C) tb
18 The enthalpy of fusion of A-site (kJ/mol) ΔfusHa

19 The enthalpy of fusion of B-site (kJ/mol) ΔfusHb

20 The density of A-site metal (g/cm3) ρa
21 The density of B-site metal (g/cm3) ρb

Fig. 1. The R versus generation of the evolution process in GA.

Table 2
The results of GA feature selection.

Algorithm The selected features

SVR χpb, rc, Ra/Rb, EAa, tmb, ta
RVM Ra, χpa, t, rc, I1a, Ra/Rb, EAa, ta, ΔfusHa, ρb

Fig. 2. The optimization process of hyper-parameter of the SVR model in GA.

Table 3
The list of hyper-parameters of SVR and RVM.

Algorithm Hyper-parameters

SVR C=2; σ= 0.2; ε= 0.01
RVM γ=0.171
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