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A B S T R A C T

We adopted and extended an efficient Grüneisen formalism to study the phonon anharmonicity and linear
thermal expansion coefficients (TECs) of trigonal bismuth selenide (Bi2Se3) and antimony telluride (Sb2Te3).
Anharmonicity of the systems is studied via extensive calculation of Grüneisen parameters that exploit sym-
metry-preserving deformations. Consistent with experimental findings, a large anisotropy between the TECs in
the a and c directions is found. The larger anharmonicity inherent in Sb2Te3, as compared to Bi2Se3 is offset by
the volumetric effect, resulting in comparable temperature dependence of their linear TECs. The Debye tem-
peratures deduced from our first-principles data also agree very well with the existing tabulated values. The
highly efficient methodology developed in this work, applied for the first time to study the linear TECs of two
trigonal thermoelectric systems, opens up exciting opportunities to address the anharmonic effects in other
thermoelectrics and other low-symmetry materials.

1. Introduction

Bismuth selenide (Bi2Se3) and antimony telluride (Sb2Te3) belong to
a large family of metal dichalcogenides that hosts excellent thermo-
electric materials [1] and topological insulators [2–4]. As paradigmatic
examples of materials that simultaneously host enigmatic 3D Z2 topo-
logical states, these two materials have been extensively studied ex-
perimentally [5–8] and theoretically [9,10] due to their technological
importance and fundamental interest. The linear and volumetric
thermal expansion coefficients (TECs) of Bi2Se3 and Sb2Te3 have been
determined experimentally [5] where a high anisotropy is found be-
tween linear TECs in the a and c directions for these two systems.

For engineering applications of these materials, good device per-
formance hinges on a solid understanding of thermal expansion beha-
vior because phonon dynamics is intimately affected by temperature-
induced crystal deformations. In fact, TEC has been identified as a key
design parameter for thermoelectric materials [11]. Thermal expansion
and electron-phonon coupling have been shown to drive the tempera-
ture dependence of the band structure of topological insulators [12].
The strain caused by thermal expansion could induced a topological
phase transition in topological insulators [13]. As found in [14,15],
knowledge of the linear thermal expansion and phonon anharmonicity
can be captured through phonon frequency lineshifts through the
Grüneisen parameters. Such calculations of the thermal expansion
properties are commonly performed using a quasi-harmonic

approximation (QHA), which involves many phonon calculations on
many possible combinations of lattice parameters. But due to its com-
plexity, the QHA is efficient only when dealing with highly symmetric
systems such as cubic lattice structures. However, many technologically
important crystals are not cubic, and other more efficient approaches
are necessary, such as the efficient self-consistent quasiharmonic ap-
proximation [16]. In this paper, we adopted and extended an efficient
Grüneisen approach by Refs. [17–20] to study Bi2Se3 and Sb2Te3 with a
minimal set of relatively expensive (compared to standard density-
functional total-energy calculations) phonon calculations. Through it,
we are able to perform a systematic investigation on the anharmonicity
of these two materials with relatively low symmetry, and make con-
sistent comparisons between some of their important thermal proper-
ties such as linear TECs.

2. Methodology

The trigonal Bi2Se3 and Sb2Te3 belong to the symmorphic space
group R m3 (No. 166). There are three inequivalent atoms: an Sb atom
occupies c μ6 (0,0, ) site, a Te atom occupies a3 (0,0,0) site, and a second
Te atom occupies c ν6 (0,0, ) site. This gives a total of 15 atoms in the
conventional hexagonal unit cell. However, in order to reduce the
amount of computing time, we use a primitive rhombohedral cell of five
atoms that is three times smaller than the conventional hexagonal cell.
The rhombohedral cell length ar and angle αr can be deduced from the
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hexagonal lattice parameters ah and ch, and vice versa. The relations
are: = = +a a α c a α2 sin( /2), 3 6cosh r r h r r . On the other hand,

= + = − +a a η α η η( /3) 3 ,cos (2 3)/(2 6)r h r
2 2 2 where =η c a/h h.

We perform density-functional theory (DFT) calculations within the
local density approximation (LDA) as implemented in the plane-wave
basis suite QUANTUM ESPRESSO [21] (QE), with wavefunction and
density cutoffs of 60 and 480 Rydberg, respectively. A × ×10 10 10
Monkhorst-Pack mesh is used for the k-point sampling. LDA has been
shown [22] to reasonably reproduce the experimental results for the
mean-square displacements (MSD) for Sb2Te3. However, we note that
future studies should include the van der Waals bonding in the inter-
planar (i.e., c) direction and spin-orbit interactions. The pseudopoten-
tials for Bi, Se, Sb, and Te are generated using the pslibrary.1.0.0 that is
based on the Rappe-Rabe-Kaxiras-Joannopoulos [23] scheme. We relax
the structures fully before carrying out the phonon calculations. For
Bi2Se3, we obtain =a c( , ) (4.110,27.900) Å. This is in good agreement
with the experimental [24] result of (4.143,28.636) Å. For Sb2Te3, we
obtain =a c( , ) (4.244,29.399) Å, which is in good agreement with the
experimental [5] result of (4.242,30.191) Å.

According to the Grüneisen approach [17–20,25,26], the linear
TECs in the a and c directions, denoted as α T( )a and α T( )c , respectively,
are given by
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where = + −D C C C C( ) 211 12 33 13
2 . We note that Eq. (1) is a special case of

a general treatment presented in Ref. [17]. For clarity, the explicit
dependence of α’s and Ii’s on temperature T is suppressed in Eq. (1). We
will discuss more about Ii later. The Cij are the elastic constants. The
linear TECs are inversely proportional to the volume Ω of primitive cell
at equilibrium. We note that Bi2Se3 has a smaller Ω than Sb2Te3 (i.e.,
136.05 Å3 vs 152.87 Å3). From a series of symmetry-preserving de-
formations with strain parameters ranging from−0.01 to 0.01, the elastic
constants are deduced from parabolic fits to the energy-strain [27]
curves. For Bi2Se3, + = =C C C121.74, 30.1811 12 13 , and =C 54.4533 GPa.
For Sb2Te3, + = =C C C110.73, 32.1611 12 13 , and =C 60.9733 GPa. We
note that the expression for TECs in Eq. (1) is identical to the hexagonal
case [20] since a trigonal cell can be perfectly embedded in a hexagonal
cell.

Central to our Grüneisen formalism is the temperature dependent
heat capacity weighted by the Grüneisen parameter,

∫∑= qI T
π

d γ c ν T( ) Ω
(2 )

( , )q qi
λ

i λ λ3 BZ ,
(2)

where the integral is over the first Brillouin zone (BZ). Here
= − ∂ ∂ ∊− −γ n ν ν /q q qi λ λ λ i,

1 1 are the mode-dependent and deformation-

dependent Grüneisen parameters, which measures the rate of change of
the phonon frequency ν qλ (of mode index λ and wavevector q) with
respect to the strain parameter εi. n equals to 1 (2) for a uniaxial
(biaxial) strain. The specific heat contributed by a phonon mode of
frequency ν is = =c ν T k r r r hν k T( , ) ( /sinh ) , /2B B

2 . kB and h are the
Boltzmann and Planck constants, respectively. To keep track of the
origin of anharmonicity more precisely, we further define the density of
phonon states weighted by Grüneisen parameter, νΓ ( )i , given by

∫∑= −qν
π

d δ ν ν γΓ ( ) Ω
(2 )

( )q qi
λ

λ i λ3 BZ ,
(3)

such that ∫=I T dν ν c ν T( ) Γ ( ) ( , )i ν
ν

imin
max . νmin (νmax) is the minimum

(maximum) frequency in the phonon spectrum. The functions νΓ ( )i
provide a deeper understanding about I T( )i since it isolates the an-
harmonicity-dependent contributions from the harmonic specific heat
capacity c ν T( , ), which has a well-known universal form [19]. Finally
we note that I T( )i is related to the macroscopic [29] Grüneisen para-
meters, γ T( )m i, by the relation =γ T I T C T( ) ( )/ ( )m i i v, where

∫= ∑ qC T d c ν T( ) ( , )qv π λ λ
Ω

(2 ) BZ3 is the specific heat at constant volume.
Therefore γ T( )m i, can be interpreted as an average over Grüneisen
parameters weighted by the mode dependent heat capacity. Its physical
meaning is clearest in the large-T limit, where γm i, reduces to a simple
arithmetic average of all Grüneisen parameters in the BZ since the heat
capacities for each mode approaches unity (in units of kB) in this limit.

To calculate the Grüneisen parameters resulted from a deformation
of the crystal [26] due to an xy biaxial strain, a strain-parameter set of
∊ ∊( , ,0,0,0,0)1 1 (in Voigt’s notation) is used, where the rhombohedral cell
has a new lattice parameters ′ = + + ∊ +a a η η[ 3(1 ) ]/( 3)r r

2
1

2 2 and
′ = − + ∊ + + ∊α η ηcos [2 3(1 ) ]/[2 6(1 ) ]r

2
1

2 2
1

2 . For a z uniaxial strain, we
use the strain-parameter set of ∊(0,0 , ,0,0,0)3 , where the rhombohedral
cell has ′ = + ∊ + +a a η η[ (1 ) 3]/( 3)r r

2
3

2 2 and cos
′ = + ∊ − + ∊ +α η η[2 (1 ) 3]/[2 (1 ) 6]r
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2 . Importantly, these two de-
formations preserve the space group of the crystal so that we can use
the QE symmetry switch of IBRAV=5. We use small strains of

= ±e 0.25%1 and = ±e 0.5%3 for the calculation Grüneisen parameters
using finite-differences. For phonon calculations under the QE im-
plementation, we use a q mesh of × ×5 5 5, which is equivalent to a

× ×5 5 5 supercell [30] for the determination of interatomic force
constants. A recent work shows that for commensurate wavevectors one
may use smaller supercells [31].

3. Results

The Grüneisen parameters along the representative high-symmetry
directions for Bi2Se3 and Sb2Te3 due to an xy biaxial strain are shown in
Fig. 1(a) and (c), respectively. Similarly, the results due to a z uniaxial

Fig. 1. The Grüneisen parameters for Bi2Se3 due to (a) an xy biaxial strain and (b) a z uniaxial strain. The corresponding results for Sb2Te3 are shown in (c) and (d),
respectively. The label and coordinates of the k points are taken from Ref. [28]. The densities of Grüneisen parameters, g γ( ), shown on the right side of each figure
are obtained with a sampling of × ×30 30 30 k points.
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