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A B S T R A C T

Perovskite materials have become ubiquitous in many technologically relevant applications, ranging from cat-
alysts in solid oxide fuel cells to light absorbing layers in solar photovoltaics. The thermodynamic phase stability
is a key parameter that broadly governs whether the material is expected to be synthesizable, and whether it may
degrade under certain operating conditions. Phase stability can be calculated using Density Functional Theory
(DFT), but the significant computational cost makes such calculation potentially prohibitive when screening
large numbers of possible compounds. In this work, we developed machine learning models to predict the
thermodynamic phase stability of perovskite oxides using a dataset of more than 1900 DFT-calculated perovskite
oxide energies. The phase stability was determined using convex hull analysis, with the energy above the convex
hull (Ehull) providing a direct measure of the stability. We generated a set of 791 features based on elemental
property data to correlate with the Ehull value of each perovskite compound, and found through feature selection
that the top 70 features were sufficient to produce the most accurate models without significant overfitting. For
classification, the extra trees algorithm achieved the best prediction accuracy of 0.93 (± 0.02), with an F1 score
of 0.88 (± 0.03). For regression, leave-out 20% cross-validation tests with kernel ridge regression achieved the
minimal root mean square error (RMSE) of 28.5 (± 7.5) meV/atom between cross-validation predicted Ehull
values and DFT calculations, with the mean absolute error (MAE) in cross-validation energies of 16.7 (± 2.3)
meV/atom. This error is within the range of errors in DFT formation energies relative to elemental reference
states when compared to experiments and therefore may be considered sufficiently accurate to use in place of
full DFT calculations. We further validated our model by predicting the stability of compounds not present in the
training set and demonstrated our machine learning models are a fast and effective means of obtaining quali-
tatively useful guidance for a wide-range of perovskite oxide stability, potentially impacting materials design
choices in a variety of technological applications.

1. Introduction

The discovery of novel functional materials is central to the con-
tinuing development of materials technologies. Recently, high-
throughput DFT methods have been used to guide the discovery of new
compounds for numerous applications, including: perovskite oxides for
solid oxide fuel cell (SOFC) cathodes [1,2], thermochemical water
splitting [3], half-heusler and sintered compounds for thermoelectrics
[4,5], oxides and oxynitrides for light harvesting [6] and photoelec-
trochemical water-splitting [7,8], and binary metal alloys for electro-
catalytic hydrogen evolution [9] and oxygen reduction [10]. While
high-throughput DFT studies are valuable for discovering new func-
tional materials, they suffer from the high computational cost required
to conduct hundreds to thousands of DFT calculations.

In an effort to reduce the large amount of time required to conduct

large-scale screening studies, either computational or experimental, we
here apply machine learning approaches that have been demonstrated
to efficiently predict many properties of materials given only relatively
easily obtained structural or compositional information. Examples of
properties predicted using machine learning approaches include: re-
lative permittivity and oxygen diffusion properties of ceramic materials
[11], band gap of inorganic materials [12], formation energy of elpa-
solite structures [13], molecular electronic properties in chemical
compound space [14], density of electronic states at the Fermi energy
[15], molecular atomization energies of molecules [16], Curie tem-
perature of high-temperature piezoelectric perovskites [17], thermo-
dynamic stability of ternary oxide compounds [18], and band gap en-
ergy of crystalline compounds and metallic glass-forming ability of
ternary amorphous alloys [19]. Accurate machine learning model pre-
dictions for a material can be orders of magnitude faster than the
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corresponding DFT simulations or experiments, allowing them to be
used to quickly understand trends in materials properties and inform
materials discovery.

Of the numerous materials families investigated with high-
throughput DFT methods, perovskite materials stand out as a particu-
larly challenging class of materials for computational screening and
property evaluation. When one accounts for the large number of dif-
ferent A- and B-site elements, as well as different typical dopant ratios
and combinations, the potential number of unique perovskite compo-
sitions may be easily greater than 107 materials (assuming 18 possible
A-site species, 31 possible B-site species, and possibly mixing up to 3
components on each site with composition restricted to increments of
0.25). This compositional flexibility of the perovskite structure enables
an array of complex functional properties, including active catalysis of
many reactions, ferroelectricity, piezoelectricity, superconductivity and
efficient light-to-energy conversion. This flexibility also creates a sig-
nificant challenge to predicting the thermodynamic stability, as stoi-
chiometric alloying information needs to be taken into account for the
different sublattices of the ABX3 structure (where A and B are one or
more cations and X is one or more anions). Recently, Schmidt, et al.
reported their work on the stability prediction of ternary perovskite and
anti-perovskite compounds, which used a DFT-generated dataset of
about 250,000 ABX3 compounds. The A, B, and X species were chosen
from a pool of more than 60 elements (64× 63×62=249,984) and a
achieved mean absolute error of 121meV/atom for regression of energy
above the convex hull [20]. However, there are a large number of
quaternary or quinary perovskite materials with doped elements in the
A- and B- sites in an array of technologically relevant applications, so it
is important to also explore the use of machine learning approaches on
perovskites which have alloying on the A- and B-sites.

Recently, Jacobs, et al. used high-throughput DFT methods to
screen the catalytic activity and thermodynamic phase stability of 2145
perovskite oxides for use as SOFC cathodes [2]. In general, the ther-
modynamic phase stability of a perovskite is a key materials property,
the value of which may determine the utility of the perovskite in the
given application of interest. The stability typically correlates at least
loosely with whether a perovskite is synthesizable, as well as whether it
may be expected to degrade (or remain stable) over time under some
operational environment, such as a specific working temperature or
partial pressure of oxygen [2,17]. In the work of Jacobs, et al., the
stability of perovskite oxides was evaluated by using the phase diagram
tools contained within the Pymatgen toolkit. The phase diagram tools in
Pymatgen enable one to perform convex hull analysis, where the sta-
bility of a particular material composition (e.g. LaFeO3) within a user-
provided composition space (e.g. all inorganic crystalline compounds
comprising the La-Fe-O system) can be performed. The main parameter
governing stability is the energy above the convex hull (Ehull) [21]. The
value of Ehull is a measure of the decomposition energy of the com-
pound into a linear combination of the stable phases present on the
phase diagram. Thermodynamically stable compounds exhibit an Ehull
of zero (i.e., they are on the convex hull and are stable, equilibrium
phases present on the phase diagram, at least at near zero temperature),
and more positive values of Ehull indicate decreasing stability [22].
Based on the provided example above for LaFeO3, this material is
thermodynamically stable and has Ehull = 0meV/atom. However, if one
were to dope Sr on the A-site and Co on the B-site of LaFeO3 to create
La0.375Sr0.625Co0.25Fe0.75O3 (LSCF, a well-studied commercial SOFC
cathode material), then the convex hull analysis of this compound in
the La-Sr-Fe-Co-O system results in Ehull = 47meV/atom, where the
energy is relative to the more stable decomposition products of LaFeO3,
Sr2Co2O5, Sr2Fe2O5, and O2. This analysis indicates that LSCF is less
stable than LaFeO3, as the Ehull value of LSCF is larger. The pool of
approximately 2145 perovskite materials calculated by Jacobs, et al.
represents a very small fraction of the composition space of possible
perovskite oxide compositions. Thus, data-driven methodologies based
on machine learning would be beneficial to predict the stability of many

additional perovskite oxide compounds.
In this work, we predict the thermodynamic phase stability of per-

ovskite oxides using machine learning models and a subset of the per-
ovskite stability data from Jacobs, et al. [2] of 1929 compounds (these
1929 were the subset of the 2145 compounds available at the time of
writing this paper). The model can serve as a screening tool for fast
discovery of potential stable compounds, significantly reducing DFT
computational time and effort. We have trained several machine
learning models for both classification and regression. For classification
of determining stable versus unstable compounds, we found that the
extra trees classifier (also known as extremely randomized trees) [23],
resulted in the best classification model as determined by its calculated
precision, recall and F1 score of stable/unstable predictions. For re-
gression of the Ehull values, we found the kernel ridge regression model
[24] after parameter optimization gave the best regression fitting per-
formance as determined by its calculated R2 score and RMSE of pre-
dicted Ehull values. Overall, our model can predict the thermodynamic
phase stability of perovskite oxide materials with uncertainties that are
within typical DFT energy error bars compared to experiments.

2. Methods

The construction and validation of our machine learning models to
predict perovskite stability involved five steps: (i) Generation of a
feature set that can describe the thermodynamic properties of per-
ovskite oxides. (ii) Identification of relevant features that show high
correlation with stability through feature selection. (iii) Selection of the
best machine learning model from the set of candidate machine
learning algorithms. (iv) Examination of the model validity for different
perovskite composition spaces, based on the frequency each element
occurs in the training dataset. (v) Prediction of thermal stability of new
perovskites outside of the dataset and comparison of the predicted
values with DFT calculations. In the following sections, we detail each
of the above steps needed to construct our machine learning models.

In this work, we have used the python library scikit-learn [25] for
all machine learning models, feature selection methods and model
evaluations. Scikit-learn is an open source machine learning package
distributed under BSD license. A summary of all scikit-learn routines
and function calls used in this work is provided in the Data in Brief
(DiB) [26]. The training dataset of perovskite oxide compositions and
DFT-calculated Ehull values, as well as the project source code and best
models are also provided in the DiB.

2.1. Dataset and feature generation

The training dataset was comprised of 1929 perovskite oxide com-
positions from the work of Jacobs, et al. [2] These perovskite materials
were simulated using DFT methods, and the stability of each compound
was analyzed using the Pymatgen toolkit and all DFT-calculated ma-
terials present in the Materials Project online database as of December
2016 [22]. The Ehull values were obtained under environmental con-
ditions of T=1073 K, p(O2)= 0.2 atm (this corresponds to an oxygen
chemical potential of −6.25 eV/O, which is −1.31 eV/O relative to the
O2 molecule energy calculated in the Materials Project (material iden-
tification number mp-12957)), which represents the approximate
working conditions of SOFC cathodes. Additionally, H2 was present in
the phase stability calculations via equilibrium with O2 and H2O gas,
and a relative humidity of 30%. Additional computational details can
be found in Jacobs, et al. [2] We note here that based on our choice of T
and p(O2) conditions, the present model is suitable for predicting the
stability of perovskites at elevated temperature at approximately room
p(O2) conditions. We believe this choice of thermodynamic conditions
does not overly limit the general applicability of our model in pre-
dicting perovskite stability because (1) many technological applications
involving the use of perovskite oxides operate at elevated temperatures
or in environments that are otherwise more reducing that standard
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