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A B S T R A C T

The paper reviews several modern methods for calculation of Helmholtz free energy, associated with atomic
vibrations: quasiharmonic approximation, self-consistent lattice dynamics method, calculation based on velocity
autocorrelation function, temperature-dependent effective potential and thermodynamic integration. The results
of free energy calculation by these methods are compared with each other in a wide temperature range, and their
applicability is discussed. As a tool we use classical molecular dynamics modeling on the example of bcc mo-
lybdenum and fcc aluminum. The relation is observed between how the vibrational spectrum changes with
temperature due to the anharmonicity of the potential and how free energy is reproduced. All methods are
consistent with each other within 10meV/at. at relatively low temperatures. At high temperatures, the dis-
crepancy reaches tens of meV/at., although the relative error is less than 5%.

1. Introduction

Calculation of free energy is one the crucial tasks of materials sci-
ence. Knowledge of free energy in various external conditions is ne-
cessary for constructing phase diagrams, determining the stability of
crystal structures and defects, prediction of chemical reactions [1,2]. At
this point the possibility of accurate calculation of the free energy
without involving experimental data is important, since experiments in
a wide range of external conditions are difficult. This question is also
relevant in the development of new materials, when the criterion of
phase stability should be satisfied [3].

A significant contribution to the free energy of solids is caused by
thermal motion of atoms. Therefore, a method is needed that re-
produces the lattice dynamics as accurately as possible. On the other
hand, it must be computationally efficient, so that the calculation of
free energy would not be a bottleneck, for instance, while searching for
a new materials.

At present, there are many methods for lattice dynamics description
and calculating free energy. They include, for example, quasi-harmonic
approximation, methods of self-consistent lattice dynamics [4–6], cal-
culation from the velocity autocorrelation function [7–9], temperature-
dependent effective potential method [10–12] and thermodynamic in-
tegration method [13–16]. All of them have their pros and cons, as well
as various computational cost. The present paper is devoted to a com-
parison of these methods, namely, how well they reproduce free energy
with respect to each other. For the authors knowledge, such a complete

comparison has not been made before.
As an example, the comparison was made for aluminum, as the

example of fcc metal with relatively low melting temperature, and
molybdenum, as the example of bcc metal with high melting point.
Both of them are of importance for practical applications. As a tool,
classical molecular dynamics was used. This made it possible to carry
out calculations with the same accuracy for different methods, while
often in the literature the results of classical and first-principle mod-
eling are compared, as well as an experiment. The fundamental dif-
ference between these approaches introduces additional uncertainty
into the comparison. The main interest here is how the results by var-
ious techniques differ under the same conditions (interatomic potential,
temperature, volume).

The present paper is organized as follows. The next Section 2 is
devoted to a brief description of the thermodynamic properties of a
crystal at finite temperature, and a review of the methods used. Details
of calculations are explained in Section 2.8. Section 3 contains the re-
sults. The discussion includes the analysis of atomic displacements
(Section 3.1), the energy density of vibrational states (Section 3.2) and
free energy (Section 3.3). Finally, Section 4 contains the main conclu-
sions.
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2. Methods

2.1. Thermodynamic properties of a crystal

Helmholtz free energy F characterizes the system at a given tem-
perature T and volume V:

≡ − = + − = +F V T TS TS F F( , ) ,0 vib vib 0 vibE E E (1)

where 0E is the internal energy of a static lattice at =T 0, vibE is the part
of internal energy associated with thermal (including zero-point) mo-
tion of atoms, S is the entropy. By thermal motion we mean lattice
vibrations, which are anharmonic in general. Restricting ourselves to
classical systems, we assume that in (1) the role of electrons is reduced
to an implicit contribution to the internal energy E , and entropy is
purely related to lattice vibrations. In what follows we shall consider
only a part of the free energy associated with the vibrations Fvib.

The internal energy contains the kinetic T and the potential U part,
and the latter is usually expanded in a series of atomic displacements:
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Here u is the displacement of the ion, ijk are the atomic indices, αβγ are
the Cartesian indexes and U0 is the potential energy of the static lattice
at =T 0. The second-order term corresponds to the harmonic approx-
imation, and high-order terms are anharmonic contribution. The force
constants Φ are determined by the derivatives:
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and so on.
In the harmonic approximation, the free energy can be analytically

calculated. It is equal to the free energy of a system of non-interacting
quantum oscillators:
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Here, index λ stands for the pair of indices sq( , ) characterizing the wave
vector and the polarization of the vibrational mode ω q( )s . The problem
is that the real potential is not harmonic, and therefore different ap-
proximations are used. Using the perturbation theory [17], it can be
shown that in general the anharmonicity leads to renormalization of the
vibrational spectrum and its broadening:

= +ω T T i T( ) Ω ( ) Γ ( ).λ λ λ (5)

The most commonly used approach is to use the renormalized fre-
quencies TΩ ( )λ in (4), if the imaginary part of self-energy TΓ ( )λ is low,
although the accuracy of this procedure is not clear. It was shown
[18,19] that in the low-order perturbation theory this is justified for
entropy, but not for internal energy. In the case of strong anharmonicity
the procedure is questionable.

There are a number of approaches to obtaining TΩ ( )λ . Those used in
the present work are briefly described below. Some of them require
only static calculations, others require molecular dynamics (MD) si-
mulations. One should to note, that MD gives internal energies along
trajectory, but the partition function cannot be obtained directly from
the simulation [20].

2.2. Small displacement method

The simplest and the most widely used method is the quasiharmonic
approximation (QHA) [1,2]. Within the framework of this method,
harmonic approximation is used for the potential energy (2), and the
anharmonic effects are taken into account only by changing the cell
volume. Within the small displacements method (SDM) the force

constants Φij
αβ are obtained by calculating the potential energy of the

supercells with atoms displaced by a given distance =δ ui
α, and fre-

quencies of the vibrational modes are obtained by solving the eigen-
value problem.

The advantage of the method is its low computational cost and the
possibility to obtain analytically all the thermodynamic properties
(F S, ,E ) and the spectrum of vibrational states – phonons. An obvious
drawback is the unpredictability of the results if the actual potential (2)
is anharmonic. In this case SDM can give incorrect results, depending
on the δ , up to the dynamic instability of the system.

2.3. Self-consistent lattice dynamics method

In the method of self-consistent (ab initio) lattice dynamics (SCAILD)
[4,21], the harmonic approximation is also assumed. However, the
frequencies of the vibrational modes and ionic displacements are cal-
culated in a self-consistent manner according to the following scheme.
(i) A certain initial displacement is defined and the phonon spectrum is
calculated, as described in Section 2.2. (ii) From the spectrum obtained,
the atomic displacements (with zero-point contribution) at the desired
temperature are analytically calculated. (iii) With these displacements
new set of forces and frequencies are calculated, and then frequencies
are averaged over several iterations. (iv) New displacements are cal-
culated, using averaged frequencies. A cycle (ii)-(iv) is repeated until
the convergence of the frequencies (or free energy).

SCAILD requires series of statical calculations. Typically it is tens of
iteration until convergence.

2.4. Calculation of free energy from the velocity autocorrelation function

The expressions for the free energy in the harmonic approximation
(4) can be written in the form of an integral over the energy (fre-
quency):
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where g ω( ) is the energy density of the vibrational states (VDOS), in
this case the phonons. Entropy has the form:

∫= −
∞
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where =x ω k Tℏ /(2 )B . If the potential is not harmonic, the stationary
states of the harmonic Hamiltonian are no longer exact. The realistic
VDOS, with the interaction between phonons taken into account, can be
obtained using MD simulation. Then this density can be used to cal-
culate the entropy (7) or the free energy (6) in the harmonic approx-
imation. As mentioned in Section 2.1, in the case of significant anhar-
monicity the applicability of such an approach is questionable.

The realistic energy density of the vibrational states can be calcu-
lated as the Fourier transform of the velocity autocorrelation function
(VACF) of atoms at a given temperature [7]:
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Here 〈…〉 means averaging over the system. To achieve good con-
vergence of (8), systems containing about 10 –105 6 of atoms are required.
In this regard, the method can be applied mostly with classical MD.

2.5. Temperature-dependent effective potential

Calculation of the spectrum of vibrational states at a finite tem-
perature can be approached in a different way, using the method of
temperature-dependent effective potential (TDEP) [10,11]. In the fra-
mework of TDEP a realistic potential at a finite temperature is ap-
proximated by an effective harmonic potential. To do this, for the dis-
placements of atoms, obtained in the MD simulation, the difference
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