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ARTICLE INFO ABSTRACT

Data-driven methods are emerging as an important toolset in the studies of multiscale, multiphysics, materials
phenomena. More specifically, data mining and machine learning methods offer an efficient toolset for ex-
tracting and curating the important correlations controlling these multiscale materials phenomena in high-value
reduced-order forms called process-structure-property (PSP) linkages. Traditional machine learning methods
usually depend on intensive feature engineering, and have enjoyed some success in establishing the desired PSP
linkages. In contrast, deep learning approaches provide a feature-engineering-free framework with high learning
capability. In this work, a deep learning approach is designed and implemented to model an elastic homo-
genization structure-property linkage in a high contrast composite material system. More specifically, the pro-
posed deep learning model is employed to capture the nonlinear mapping between the three-dimensional ma-
terial microstructure and its macroscale (effective) stiffness. It is demonstrated that this end-to-end framework
can predict the effective stiffness of high contrast elastic composites with a wide of range of microstructures,
while exhibiting high accuracy and low computational cost for new evaluations.
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1. Introduction

An important mission of the field of materials science is to design
new/improved materials that can meet the stringent demands placed by
emerging advanced technologies. The paradigm of process-structure-
property (PSP) linkages plays a central role in capturing and curating
the high value materials knowledge needed in this pursuit[1-11]. The
extraction and deployment of these linkages has been hindered by the
high dimensional representations needed for a rigorous description of
the inherently heterogeneous material structure spanning multiple
length or internal structure scales. Indeed, the precise physics-based
connections between the material structure and its associated proper-
ties are very complex. However, from a practical viewpoint of materials
design, it is imperative that we capture the high value information in
these complex linkages in forms that allow computationally efficient
explorations of the extremely large design spaces. Broadly speaking,
PSP linkages can be cast in both directions of scale-bridging: (i)
homogenization (going from smaller scales to larger scales) [12-14]
and (ii) localization (going from larger scales to smaller scales)
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[11,15-20]. Our focus here will be on homogenization, i.e., prediction
of macroscale elastic properties of a high contrast composite given its
microstructure information. Contrast in this context refers to the dif-
ferences in the individual properties of the microscale constituents
present in the material microstructure.

The conventional approaches for establishing structure-property
linkages in composite materials have relied either on highly sophisti-
cated analytical approaches based on statistical continuum theories
[21-23] or on numerical approaches based on finite element (FE)
models. Although the statistical continuum theories are very attractive
because of their low computational cost (especially significant in ex-
ploring large design spaces), progress in this direction has been largely
hindered by the need to establish accurately the Green’s functions based
kernels used in these theories, and the slow convergence of the series
expansions for high contrast composites [24,25]. While the numerical
approaches such as the finite element models circumvent these chal-
lenges effectively, they are not best suited for design explorations of the
potentially very large materials space (i.e., solving inverse problems
identifying the specific microstructures meeting a designer specified set
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of desired property combinations [4,26,27]).

In recent years, data-driven approaches have attracted the attention
of materials science researchers [28-35]. A new framework called
Materials Knowledge Systems (MKS) [9,7,15,16,18,36,37] was for-
mulated to take advantage of the relative merits of both the analytical
and the numerical approaches described above in formulating struc-
ture-property linkages. In this data-driven approach, one first ag-
gregates a sufficiently large ensemble of data points using the numerical
approaches, where each data point includes information on the material
microstructure (treated as input) and its effective property of interest
(treated as output). After establishing the data set, one then calibrates
the Green’s function based kernels in the statistical continuum theory
series expansions to the aggregated data set using suitable regression
techniques. This approach has been shown to synergistically combine
the respective merits of both the analytical and numerical approaches
described earlier, and provide remarkably accurate, low computational
cost, structure-property linkages for low to medium contrast composites
[7,9,11,15,18,38]. Although the viability of the MKS approach has also
been demonstrated for high contrast composites, there continue to be
significant hurdles as the application to the high contrast composites
requires feature engineering. In this regard, it is noted that feature
engineering (i.e., selection of the important microstructure features
influencing the effective property of interest) in the context of the MKS
framework has been explored mainly using the framework of n-point
spatial correlations and principal component analyses [6,37,39-43].
While the current feature engineering approach in the MKS framework
was demonstrated to be highly successful in the consideration of the 2-
point spatial correlations, its extension to include higher-order spatial
correlations is nontrivial. This is mainly because of the explosion in the
number of spatial correlations as one goes up systematically to the
higher order spatial correlations.

In recent years, deep learning approaches have emerged as the
methods of choice in addressing the problem of automated identifica-
tion of features from an extremely large set of potential features. These
methods have enjoyed successes in a broad range of application do-
mains including computer vision (e.g., image segmentation, image
classification and face recognition) [44-50]. This emerging new ap-
proach significantly outperforms traditional machine learning methods
in its ability to learn the embedded model in an aggregated dataset.
More specifically, deep learning approaches provide an end-to-end
framework where an explicit feature design is not required. Conse-
quently, the trained models usually exhibit higher generalization. Thus,
deep learning approaches exhibit tremendous potential for addressing
some of the main hurdles in materials research. In [51] Liu et al. ap-
plied deep convolutional neural networks to model a large image data
collection of polycrastal electron patterns. Liu et al. [52] used deep
neural networks to understand the relationship between the composi-
tion and the properties of materials. In [53], Li et al. implemented
transfer learning approach to reconstruct material microstructures.
Cang et al. [54] developed a convolutional deep belief network to au-
tomate conversion between microstructure and corresponding lower-
dimensional feature representations. Later, Cang et al. [55] applied
Variational Auto-Encoder to generate artificial material samples with
same morphology distribution as the authentic ones. In [56,57], Yang
et al. and Li et al. developed a Generative Adversarial Networks to
identify the key microstructure representations and implemented it to
design material microstructure with desired properties. Gopalakrishnan
et al. [58] applied transfer learning technique to detect crack in pave-
ment.

The target in this study is to establish structure-property linkages for
homogenization of high contrast two-phase elastic composites.
Homogenization in hierarchical multiscale modeling refers to transfer
of information about the microstructure from a lower length scale to
higher length scale. This information is usually expressed as an effective
property of the material volume being studied and is calculated through
various averaging techniques [12-14]. The main challenge in
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calculating the effective stiffness is to solve the governing field equa-
tions formulated at the lower length scale. This is a computationally
expensive task if one considers the large space of microstructures that
needs to be explored. The proposed deep learning approach will address
this task by building data-driven structure-property linkages (i.e., re-
duced-order models or surrogate models) between the 3-D micro-
structure and the effective elastic stiffness value.

In this paper, we explore the benefits of using deep learning ap-
proaches in establishing high value structure-property homogenization
linkages for high-contrast elastic 3-D composite microstructures. In a
prior work [59], convolutional neural networks (CNN) were employed
to build a model that converts the binary microstructure information
into a set of filters that serve as higher-order microstructure informa-
tion. However, this effort was not strongly explored as a completely
feature-engineering free approach. In this study, a standalone CNN is
built for the first time to establish structure-property linkages for high
contrast elastic 3-D composites using a completely feature-engineering
free approach. An extensive analysis of convolutional neural networks
with different numbers of convolution and pooling layers was per-
formed. The performance of the CNN is compared to structure-property
linkages established with simple physics-based approaches and so-
phisticated physics-inspired approaches (these will be introduced in
Section 3.2) employed in our prior work [7,9,60]. It will be shown
through error metrics that CNN built in this study outperforms bench-
mark methods.

2. Datasets and methods
2.1. Generation of high contrast elastic 3-D datasets

In order to explore and evaluate the performance of CNN models in
predicting the effective elastic properties of high contrast composites,
we first need to generate a dataset that reflects the ground truth. In this
work, because of the lack of a suitable experimental dataset, we assume
that the ground truth is reasonably well captured by the results of
micromechanical finite element models applied on digitally generated
microstructures. Therefore, for this study, we generated 8550 3-D mi-
crostructures which are referred to as microscale volume elements
(MVESs). The main purpose of these MVEs [7,11,15,18] is to produce the
data needed to extract the desired structure-property linkages. They
have to be large enough to capture the range of microscale interactions
occurring naturally within the microstructural volume element, but
small enough to allow for generation and aggregation of the needed
data within reasonable computational cost.

The MVEs used in this study were generated by starting with a
random assignment of numbers on a uniformly tessellated 3-D spatial
(voxelized) grid, following by application of a 3-D Gaussian filter, and
finally thresholding to obtain a targeted distribution of volume frac-
tions in the ensemble (i.e., the collection of 8550 MVEs generated for
this study). In the effort to generate a rich morphological diversity in
the generated set of MVEs, 3-D Gaussian filters with different covar-
iances were employed. The filters were selected in such a way that the
MVEs had preferred directionality in three perpendicular directions.
Different combinations of diagonal entries in covariance matrix were
used to generate MVEs with different amounts of directionality. For this
case study, the off-diagonal entries were always kept zero. However, a
wider range of diversity in MVEs can be attained by using covariance
matrices with non-zero entries in off-diagonal elements as well. Some
examples of MVEs with different microstructural details are shown in
Fig. 1. The MVE in part (a) is generated by a 3-D Gaussian filter with
three identical diagonal entries in the covariance matrix. On the other
hand, the microscale constituents of MVEs in part (b), (c) and (d) have
clear directionality in x, y and z directions. The degree of directionality
of the structural features are controlled with the values of the covar-
iances used with the 3-D Gaussian filters. In total, 57 different 3-D
Gaussian filters were employed and each filter is used to generate 150
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