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A B S T R A C T

Modeling dislocation interaction on a mesoscopic scale is an important task for the description of flow stress and
strain hardening in a continuum model. In dislocation based continuum theories, different flow stress for-
mulations are commonly used in the literature. They are usually based on the average dislocation spacing related
to the square root of dislocation density, but differ in their degree of homogenization of dislocation interactions,
namely whether only total dislocation density is considered in a Taylor term or whether an interaction matrix is
used. We analyze the impact of both terms in different crystal orientations as well as homogeneously and in-
homogeneously distributed initial dislocation densities. In the dislocation based continuum formulation used
here, both terms act as a short-range stress additionally to the ”mean field” long-range stress field of elastic
dislocation interaction. We demonstrate that the simplifying assumption of an average over all possible inter-
action types is a reasonable reduction of complexity in high symmetry systems with homogeneous density
distribution. However, we also demonstrate that under specific boundary conditions and for inhomogeneities
between slip systems a significantly different density evolution is obtained on slip systems with similar Schmid-
factors, when considering different interaction strengths for different types of dislocation interaction. This is in
agreement with findings in discrete dislocation dynamics simulations in the literature.

1. Introduction

In classical, macroscopic continuum models, flow stress and strain
hardening are usually provided by phenomenological parameters based
on experimental data. Thus, the material behavior is determined by
parameters, which are only valid on the macroscopic scale. It is well
known, that continuum models based on these macroscopic parameters
are not able to account for microscopic effects such as size effects. Flow
stress and strain hardening are input parameters to such models and
cannot be considered as a predictive outcome. Physically, dislocation
interaction processes and obstacle interactions can be made responsible
for the macroscopically measurable flow stress and strain hardening.

Various formulations exist which enhance classical macroscopic
approaches by microscopic considerations. One example are strain
gradient plasticity models, e.g. [1–5], which apply a critical yield stress
and a flow rule according to a work hardening rate. Although the for-
mulations show good results in a certain regime, the models are based
on a rather phenomenological top-down approach. Thus the inter-
pretation of these models is often limited to the specific system they
intend to represent.

In contrast to that, other approaches to continuum formulations are
derived bottom-up by homogenizing discrete dislocation lines and their
interactions [6–9]. These models formulate flow stress and strain
hardening by physical considerations like the classical Taylor interac-
tion stress [10], which relates a local interaction stress to the mean
dislocation distance given as the inverse of the square root of the dis-
location density ρ:

=τ αμb ρsfl, (1)

Here, μ is the shear modulus, b is the Burgers vector, and α is a
constant factor of ±0.35 0.15 [11]. An extended Taylor relation has
been developed by Franciosi et al. [12]

∑=τ μb a ρs j sj jfl,
mat

(2)

accounting for an individual interaction stress on a slip system s based
on the interaction strengths between different slip systems j by pairing
coefficients asj and therefore distinguishing between different slip sys-
tems, that lead to different dislocation reactions. In contrast to the
factor α in the Taylor term, which is dependent on the mode of de-
formation, see [13], the coefficients asj in the enhanced term have been
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determined as an interaction matrix by discrete dislocation dynamics
(DDD) simulations [14–16].

Even though the classical Taylor interaction stress is still a com-
monly used formulation due to its simplicity using the total dislocation
density and combining all possible interactions between slip systems
into one coefficient, it has already been shown in 2d single slip, that
such a formulation can oversimplify the local processes in a micro-
structure [17]. The formulation by Franciosi et al. has been applied and
further extended e.g. by [18], who replace the self-hardening coeffi-
cients with more physical considerations. A mean free path model in-
corporating dislocation storage and recovery, as well as the influence of
line-tension effects on the interaction constants has been presented in
[19,20]. Further investigation of the flow stress and interaction of slip
systems in continuum theories has been done by considering obstacle
dislocations [21] and dipoles [22].

Although models incorporating the “Franciosi term” in crystal
plasticity frameworks, as e.g. [18,19,23], have shown accurate results
compared to experiments, both, the Taylor term and the Franciosi term,
are still commonly used in their basic form in parallel in the literature.
A thorough comparison of both formulations is still missing. However,
in order to state the reduction of complexity in a continuum model as
central objective, it is a necessity to know in which configurations a
simplification is adequate without losing physicality.

Comparing the Taylor term and the Franciosi term, a difference in
the microstructural behavior is expected if the system is dominated by a
specific type of interaction. It has been shown with DDD-simulations,
that the collinear reaction leads to a very strong interaction of the re-
spective slip systems and essentially prevents the activation of two slip
systems sharing the same Burgers vector [24,25]. Since the key para-
meter determining the interaction stress in the considered formulations
is the dislocation density, a difference in interaction stress can occur, if
the density is inhomogeneously distributed between the different slip
systems.

In this paper, we compare both interaction stress formulations in
their basic form. Incorporated in a dislocation density based continuum
formulation, we use a set of simple example systems to analyze the
dislocation density evolution and the impact of the interaction stress
terms with respect to different initial density distributions and systems
showing homogeneous as well as heterogeneous density evolutions due
to their Schmid factors or microstructural constraints. Starting with
most simple configurations leading to an inhomogeneous density dis-
tribution, we focus on the effect of collinear reactions in a system setup
with just two active slip systems, as in [24]. Then, we extend the
analysis to a full fcc single crystal with 12 slip systems. We show, that
the classical Taylor interaction stress produces reasonable results when
assuming a homogeneous density distribution under ideal loading
conditions. Averaging all occurring interactions into a single factor can
be adequate if the system behavior is not dominated by a specific in-
teraction or stabilized in high symmetry configurations. However, using
the Franciosi relation, even small variations of the resolved shear stress
or initial density lead to a distinctive density evolution on slip systems
originating from the collinear interaction coefficient. Such a behavior is
in agreement with DDD-simulations [24] and has been proposed as a
possible explanation for the strong orientation dependency of certain
load orientations [20,24]. For a continuum theory, trying to mimic such
a configuration using the classical Taylor relation, leads to an over-
simplification of the complex interactions involved. In contrast, the
stronger influence of specific interaction mechanisms in the Franciosi
relation allow for a deformation behavior, which can be significantly
different to the Schmid law.

2. Method

2.1. Dislocation based continuum model

We consider a dislocation based continuum formulation of crystal

plasticity based on the classical decomposition of the distortion tensor
into an elastic and a plastic part

= +β βuD .pl el (3)

The plastic slip γs is the result of dislocation motion on N slip sys-
tems defined by the index s, the orthonormal basis d l m{ , , }s s s and the
Burger’s vector = bb ds s s. Therefore, the plastic distortion βpl consists of
the sum of the plastic slip over all slip systems

∑= ⊗
=

β γ d m .
s

N

s s s
pl

1 (4)

The evolution of the plastic slip is given by the Orowan equation

∂ = ∂γ v b ρt s t s s s (5)

where ρs is the dislocation density and vs the velocity on the individual
slip system. Regarding the density evolution, we use the Continuum
Dislocation Dynamics (CDD) equations introduced by [6]
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where κs denotes the vector of the geometrically necessary dislocations
(GND-density) and qs the curvature density. We assume a linear de-
pendency on the resolved shear stress on each slip system τs, thus the
equations can be closed by the velocity law

= = +v b
B

τ τ τ τwiths
s

s s s sext, int, (7)

where B denotes a friction stress of × −5 10 5 Pa s. τ sext, includes stresses
induced by external loading resolved on the slip system, whereas τ sint,
accounts for internal stresses induced by dislocations. Regarding τ sint, ,
we distinguish between long- and short-range stresses in the continuum
model. In order to represent long-range stress fields, we consider a
mean field approach as given in [26] resulting in the ”mean field stress”
τ smf, . Since the mean field stress is proportional to ∫ κ, it accounts for
the contribution of the slip on a specific slip system to the long-range
stress field on all slip systems. However, the mean field stress dis-
appears in configurations of statistically stored dislocations and ne-
glects interactions of dislocation densities inside an averaging volume.
Thus, it delivers no information about the strength of the physical in-
teraction and reactions between different slip systems.

To solve this problem, additional stress formulations are used to
describe the interaction between slip systems within one averaging
volume. We consider the “Taylor term” according to Eq. (1), which
relates the interaction stress to the square root of the total density
averaged over all slip systems within one averaging element. Thus, the
interaction stress is the same on all slip systems and all possible inter-
action types are concentrated into the parameter α. In this study, we
choose =α 0.35, unless otherwise stated. In addition, the “Franciosi
term” according to Eq. (2) is incorporated into the formulation, which
summarizes the interaction strengths of each individual slip system
pairing, asj, multiplied by the density of the respective slip system ρj.
Thereby, the different interaction mechanisms are considered sepa-
rately, which in general leads to different interaction stresses on dif-
ferent slip systems. Regarding the interaction strengths asj, we consider
the interaction matrix according to [14]. For the self-interaction and
coplanar cases, i.e. =j s and = ±j s 1, we chose the Lomer coefficient
given as 0.122 [20].

The Taylor term as well as the Franciosi term act on the velocity of
each slip system. Therefore the velocity law can be derived as

= ⎧
⎨⎩
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