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A B S T R A C T

The use of a phase field approach to simulate solidification of metallic alloys has many computational ad-
vantages, but if obtaining quantitative results relies on the interface between phases being physically realistic,
the computational advantage is much reduced. We propose here a method for compensating for a computa-
tionally convenient large interface width by simply transferring a numerically derived 1D steady state anti-
trapping current to a general non-steady 2D simulation. The method proposed is not restricted to dilute or ideal
materials and has a high degree of interface width independence, illustrated here with two models, illustrating a
broad applicability for the approach.

1. Introduction

In phase-field modelling of alloy solidification, applying the varia-
tional principle to the Gibbs free energy results in equations for phase,
solute and temperature, which optimally minimise the Gibbs free en-
ergy, see [1]. The principle is clear and elegant but suffers from the
practical disadvantage that the length scale of the solid liquid boundary
is far smaller than that associated with solute and temperature diffu-
sion. Consequently, phase field modellers of solidification seek to use a
larger than physical interface width to make the mathematical system
computationally easier to solve. Simple adoption of a larger interface
width, though, reveals that solutions are width dependent, see for ex-
ample [2]. It is generally accepted that the approach to compensate for
this is not to be found in a variational formulation, see [3,4] (though,
see the discussion in Appendix C which postulates a variational for-
mulation for including anti-trapping currents). Rather, in an approach
initiated by [3], one provides an extra degree of freedom at the level of
the partial differential equations post variation by typically matching
the phase field equations model to a sharp interface model so that the
resulting equations have an element of interface width independence.
One feature of the application of matched asymptotic analysis to a
sharp interface, e.g. [4,5], is that there is necessarily a degree of ap-
proximation used in order to simplify the free energy functional to a
point where analysis and comparison with sharp interface models be-
comes tractable. For example, [6] extends [3,4] to use in multiphase
models, but only for the simplest thermodynamics. It is of note that
models that use physically realistic free energies for complex materials
avoid this approach, e.g. [2,7].

The phase field technique for alloy solidification, as established in
simpler form by [8] (WBM) is challenged by two phase modelling as
described in [9]. This approach associates a unique concentration field,
cL or cS, for the liquid or solid phases respectively, and the true con-
centration field is constructed as a weighted average using the phase
field. The quantities cL and cS are determined through a concentration
equation and, crucially, a constraint. The constraint can take the form
of proportionality, using a partition coefficient, or by equating the
chemical potential. The latter led [10] to unify the methodology using a
grand-potential functional (GPF) in place of the usual free energy. This
served also to show that the two phase approach was equivalent to a
variational formulation, in particular the equal chemical potential
constraint in the two-phase formulation is a natural consequence of the
new variational technique based on a GPF.

The GPF methodology has been applied in [11] to dilute alloys, but
it is notable here that the GPF approach still requires an anti-trapping
current to compensate for interface width, and thus, by implication, the
model of [9] would benefit from an anti-trapping current to alleviate
interface width dependence. [12] argues that the two phase models,
with the constant chemical potential across the interface, needs mod-
ification for rapid solidification, and suggest modifications that model
this: namely, to replace the constant chemical potential constraint with
equations for cL and cS. It is of note that [12] uses a physically realistic

=δ 1.875 nm in their 1D simulations (and so the method advocated in
our paper naturally do not apply here). However, for 2D/3D simula-
tions it is likely that larger interface widths will be computationally
expedient and thus some method for compensating for artificial solute
trapping will become necessary.
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The GPF approach has also been extended to include non-dilute
alloys in [13]. Here, central to the application of GPF is a quadratic
approximation of the free energies about the equilibrium concentration
values (in a multiphase setting), cij

E. An approach which does not re-
quire approximation to the data bases, for general alloy using an en-
tropy functional is found in [14]. This latter approach is motivated by a
general free boundary problem formulation and contains the equal
diffusion chemical potentials of the two-phase method as a constraint.
For more general thermodynamics the authors state that there is po-
tentially a numerical bottle neck due to this constraint.

We choose to adopt and extend the method of [8] to allow quan-
titative simulation of more general alloys, without recourse to special
cases and approximations. It is of note that the application of the WBM
approach to general free energy models has only previously been its
extension to multiphase models. Consequently, this work represents a
first attempt at quantitative modelling, and modelling in itself, for so-
lidification with arbitrary CALPHAD thermodynamics, whilst allowing
a conveniently larger than physical interface width. In this sense the
method may be seen as both an extension of [3,8], to allow rapid so-
lidification modelling for arbitrary two phase binary alloys.

A constraint on the phase field approach is that the interface must
have sufficient resolution to capture the finest curvature found at the
solid-liquid boundary. But typically, tip radii, ≫ ∼ρ d 10 nm where d0
is the chemical capillary length, being the same order of magnitude as
physical interface width, this being the distance over which long-range
atomic ordering is lost at the interface between a crystal and its parent
melt and which is typically a few atomic radii. Of more concern is the
effect of large interface width on solute partitioning where the max-
imum and minimum values for solute concentration found at the solid-
liquid interface are very much interface width dependent. This effect is
known as artificial solute trapping, since it is a model dependent effect
that tends to drive the partition coefficient closer to unity. Solute
trapping also arises naturally in systems where the velocity of growth is
sufficiently high, see [15], which analyses three regimes from low to
high growth velocity. We propose here an approach which compensates
for artificial (interface width induced) solute trapping, for realistically
modelled binary alloys at arbitrary concentration.

In outline, the method we propose consists in solving a 1D steady
state problem where the solution not only depends on input values for
tip speed and tip interface width (and given tanh profile), but also the
strength of an anti-trapping current, j. We seek the strength of j in the
steady state 1D problem such that the maximum and minimum values
for solute, c, within the interface, coincide with the equilibrium values
found from the free energy functions for liquid and solid by well known
common tangent construction. Once j is found from the 1D problem we
apply it to the full (non steady) 2D problem. New values for tip speed
and width are extracted from the 2D simulation and used, inter-
mittently, to solve the 1d problem, where the new value for j is applied
thereon.

We find, for the PbSn alloy tested, and to a large extent model of
[8], tested to make connection with a standard model, that this ap-
proach gives a high degree of interface independence across a range of
measures at the crystal tip. The measures used are tip radius, ρ, tip
speed, V, and measures for solute partitioning: ≡ −c c cΔ L S and

≡k c c/S L, where cS is the solid concentration near the tip and cL is the
liquid concentration near the tip.

2. Solute trapping in 1D

In this section we focus on a specific phase-field model for alloy
solidification, Pb-Sn in this case, in order to introduce the method
proposed to compensate for solute trapping. This is based upon looking
at the dependence of solute partitioning on interface width in a steady
state 1D scenario.

The phase equations governing the evolution of phase, ϕ, (where
=ϕ 0,1 is solid and liquid respectively) and solute concentration, c, on a

domain, Ω, are, respectively (see, for example, [1])

= −ϕ M δF
δϕ

̇ ,
(1)

and

= ∇ ∇c D δF
δc

̇ · (2)

where

∫= ∇F f ϕ ϕ c x( , , ) d ,
Ω

3
(3)

M is the mobility and = + − −D ϕD ϕ D c c RTv[ (1 ) ] (1 )/( )L S m , with the
liquid and solid diffusivities ≫D DL S, and R and vm the molar gas
constant and the molar volume respectively. The free energy density, f,
is decomposed into a surface part, fS, and bulk part fB:

= ∇ +f f ϕ ϕ c f ϕ c( , , ) ( , )S B (4)

where fB combines, by interpolation, the liquid and solid free energy
curves, illustrated in Fig. 1 for a simple constructed example. The sur-
face term is

⎜ ⎟= ⎛
⎝

∇ ∇ + − ⎞
⎠

f W c δ ϕ ϕ ϕ ϕ( )
8

· (1 )S

2
2 2

(5)

where W is the surface energy of the barrier height between the two
phases and δ is a measure of the interface width.

In 1D and at equilibrium Eq. (1) becomes

= δF
δϕ

0 S

(6)

where

∫=F f xdS SΩ (7)

The phase profile,1

Fig. 1. A constructed example free energy curves,
= − = − +f c f c( 0.25) , ( 0.75) 0.1L S2 2 with the common tangent construction that

give the equilibrium values of c in the two phases: = =c c0.85, 0.35S
E

L
E .

1 more generally the interface width, and even the general shape is modified by the
bulk driving term. Some of our tests imply that the resulting profile is well fitted by a
continuous piecewise function using two tanh profiles defined on ∈ϕ [0,0.5] and

∈ϕ [0.5,1], respectively, though we cannot assert the generality of this result.
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