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A B S T R A C T

FINEMET alloys have desirable soft magnetic properties due to the presence of Fe3Si nanocrystals with specific
size and volume fraction. To guide future design of these alloys, we investigate relationships between select
processing parameters (composition, temperature, annealing time) and structural parameters (mean radius and
volume fraction) of the Fe3Si domains. We present a combined CALPHAD and machine learning approach
leading to well-calibrated metamodels able to predict structural parameters quickly and accurately for any
desired inputs. To generate data, we have used a known precipitation model to perform annealing simulations at
several temperatures, for varying Fe and Si concentrations. Thereafter, we used the data to develop metamodels
for mean radius and volume fraction via the k-Nearest Neighbour algorithm. The metamodels reproduce closely
the results from the precipitation model over the entire annealing timescale. Our analysis via parallel coordinate
charts shows the effect of composition, temperature, and annealing time, and helps identify combinations
thereof that lead to the desired mean radius and volume fraction for nanocrystals. This work contributes to
understanding the linkages between processing parameters and microstructural characteristics responsible for
achieving targeted properties, and illustrates ways to reduce the time from alloy discovery to deployment.

1. Introduction

FINEMET alloys belong to a class of soft magnetic alloys based on
the Fe-Si-Nb-B-Cu system [1]. In comparison with other soft magnets,
FINEMET alloys possess high saturation magnetization [1] and high
permeability [2–5], low core loss [1–3,5], low magnetostriction
[1–3,5,6], excellent temperature characteristics, small aging effects,
and excellent high frequency characteristics [1–3,5]. As a result, FI-
NEMET alloys have been successfully used in a number of applications
including choke coils [1,2,7–9], mobile phones [2], noise reduction
devices [2], computer hard disks [2], and transformers [1–3,8,9]. Su-
perior soft magnetic properties are attributed to the nanocrystalline

″α -(Fe, Si) phase (Fe3Si with D03 structure) in the size range of
10−15 nm diameter (radius 5−7.5 nm) and 0.7 volume fraction
[1–6,8–16]. Since its discovery, researchers have investigated FINEMET
alloys to improve upon multiple soft magnetic properties by performing
experiments followed by characterization using advanced diagnostic
tools [2,4,5,8,10–12,14–16].

In materials design, understanding the various processing-structure-
property (PSP) linkages plays an important role in designing advanced

materials. In particular, correlations between microstructure and de-
sired properties [17–20], are essential for the deployment of new ma-
terials into service. In addition, composition variations and processing
parameters (e.g., heat treatment schedule) play an integral role in
modeling the microstructure(s) responsible for achieving desired
properties, where optimizing processing parameters along with com-
position remains a challenging task [21]. As an alternative to costly
experimentation, the CALPHAD approach allows for investigating the
effect of composition variations and heat treatment on the size dis-
tribution and volume fraction of the phase(s) that are responsible for
optimal or desired properties; indeed, it has been used for studying soft
magnets containing amorphous phases [22–24] using the commercial
software Thermocalc [25]. Recent studies indicate that simulations
based on CALPHAD [26,27] are in need of efficiency improvements if
they are to be used for optimization of the composition and heat
treatment schedule. To address this challenge, it is important to develop
models that can both replicate maximum information available from
prior studies and, in addition, demonstrate effectiveness in optimizing
the processing protocol. This effectiveness should not come, for ex-
ample, from repeating the same calculations at different compositions,
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but rather from learning the results obtained in several selected cases in
order to predict the behaviour at other compositions.

Machine learning approaches have been used to help reduce the
time required in the alloy design process [28–38]. Supervised machine
learning approaches such as artificial neural networks [37–40], k-
Nearest Neighbour algorithm (k-NN) [41,38], genetic programming
[37,38,40,42], kriging [43,44], and unsupervised approaches such as
Principal Component Analysis (PCA) [30,31,35], Hierarchical Clus-
tering Analysis (HCA) [29,31,34], and Self Organizing Maps (SOM)
[28] have been previously used in various areas of materials science
and can also be helpful in this case. From an implementation point of
view, there exist several open-source software packages to develop re-
sponse surfaces or metamodels using several different concepts from
artificial intelligence. A machine learning model based on results from
the CALPHAD approach will serve as an important rapid screening tool
before performing experiments; it also helps predict outcomes in case of
uncertainties in the composition of the material or in furnace tem-
perature during annealing.

In this article, we present a combined CALPHAD-machine learning
approach for optimizing composition along with processing parameters
for FINEMET alloys by developing metamodels (response surfaces, or
surrogate models) for the simulated crystallization of Fe3Si domains.
We have acquired data for mean radius and volume fraction of Fe3Si
nanocrystals through a recently developed precipitation model [45] in
Thermocalc [25], capable of simulating the nucleation and growth of
Fe3Si nanocrystals from an amorphous phase. Thereafter, we have used
a k-NN algorithm to generate computationally inexpensive metamodels
to replace exhaustive Thermocalc modeling without any significant loss
of accuracy. This way, we are able to demonstrate the efficacy of our
combined CALPHAD-machine learning approach by predicting com-
positions and processing parameters that would lead to achieving the
desired mean radius and volume fraction of Fe3Si nanocrystals. The
developed metamodels capture the established nucleation and growth
evolution [46,47] within the CALPHAD approach, for the entire an-
nealing timescale and for compositions and parameters that were not
included in the training set. Another important observation is that the
metamodels can predict outcomes in a fraction of the time taken by
simulations performed in Thermocalc [48]. Lastly, we propose Parallel
Coordinates Charts (PCC) [49] for comprehensive visualization of the
relationships between processing parameters and optimized quantities,
and for rapid identification of the parameters that lead to crystallization
of Fe3Si nanocrystals in the desired size range and volume fraction. Our
proposed approach helps reduce the alloy development time since it can
serve as a tool for rapid screening of the multi-dimensional parameter
space before performing experiments. As such, this combined machine
learning and CALPHAD approach illustrates a case of addressing the
challenge of simultaneously determining the effect of composition
variation and processing parameters [17–21] on the microstructure of
FINEMET, and can also be extended to other nanocrystalline alloys.

2. Methods

Fig. 1 shows the schematic flowchart of the process we followed in
order to develop our combined CALPHAD-machine learning approach
for optimization of nanocrystal size and volume fraction. This approach
is enabled by a nucleation and growth model (precipitation model) in
Thermocalc [50], recently parameterized for FINEMET [45]. We used
this model to generate data for mean radius and volume fraction of
Fe3Si nanocrystals grown upon annealing the amorphous material, data
which serves as a training set for developing metamodels. Analysis of
the results created by the metamodels reveals correlations between the
input parameters (composition, temperature, and time) and the opti-
mized quantities. The three aspects of this work (Fig. 1) are described in
some detail below.

2.1. Generating data for developing a metamodel

To generate mean radius and volume fraction data [55], we have
used the TC-PRISMA [50] module in Thermocalc, which relies on
thermodynamic (TCFE8) [48] and mobility [51] databases. TC-PRISMA
[50] uses the Kampmann-Wagner Numerical (KWN) method [46,47]
for simulating nucleation and growth of precipitates during annealing.
The KWN method is an extension of the Langer-Schwartz approach [52]
and its modified form [53]. To use the precipitation model, several
input quantities in TC-PRISMA [50] were previously parameterized
[45] so that the precipitation model simulates specifically the nuclea-
tion and growth of Fe3Si nanocrystals during annealing. The FINEMET
base composition is Fe82.35Si9.21B1.51Nb5.64Cu1.29 in weight %, or
Fe72.89Si16.21B6.90Nb3Cu1 in atomic %; we will refer only to the latter in
the remainder of the article. Simulations of precipitation were per-
formed for new compositions +Fe x72.89 −Si x16.21 B6.90Nb3Cu1 generated by
varying the content of Fe and Si by x (− ⩽ ⩽x3 3). Isothermal an-
nealing was carried out at a set of temperatures between 490 °C and
550 °C in (increments of 10 °C) to for up to 2 h holding time. We ob-
tained a significant amount of Thermocalc data for mean radius and
volume fraction of Fe3Si nanocrystals [55], which serves as training set
for the machine learning stage of the workflow (Fig. 1).

2.2. k-Nearest Neighbour Algorithm

The mean radius and volume fraction were generated in order to be
used for creating response surfaces or metamodels to help in the design
of future nanocrystalline FINEMET alloys. We use the k-NN algorithm
[41] as implemented in the software modeFRONTIER [54] to construct
the metamodels. This algorithms stores all the available information
and predicts a new output (in this case, mean radius and volume
fraction) based on a measure of similarity (distance function) of the
new input with the stored cases. Specifically, to predict the new target/
output that corresponds to a new input, the straightforward approach is

Fig. 1. Flowchart of steps followed in this work for a class of FINEMET alloy
with composition Fe72.89Si16.21B6.9Nb3Cu1
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