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A B S T R A C T

Direct prediction of material properties from microstructures through statistical models has shown to be a po-
tential approach to accelerating computational material design with large design spaces. However, statistical
modeling of highly nonlinear mappings defined on high-dimensional microstructure spaces is known to be data-
demanding. Thus, the added value of such predictive models diminishes in common cases where material
samples (in forms of 2D or 3D microstructures) become costly to acquire either experimentally or computa-
tionally. To this end, we propose a generative machine learning model that creates an arbitrary amount of
artificial material samples with negligible computation cost, when trained on only a limited amount of authentic
samples. The key contribution of this work is the introduction of a morphology constraint to the training of the
generative model, that enforces the resultant artificial material samples to have the same morphology dis-
tribution as the authentic ones. We show empirically that the proposed model creates artificial samples that
better match with the authentic ones in material property distributions than those generated from a state-of-the-
art Markov Random Field model, and thus is more effective at improving the prediction performance of a
predictive structure-property model.

1. Introduction

Direct prediction of material properties through predictive models
has attracted interests from both material and data science commu-
nities. Predictive models have the potential to mimic highly nonlinear
physics-based mappings, thus reducing dependencies on numerical si-
mulations or experiments during material design, and enabling tract-
able discovery of novel yet complex material systems [1–3]. None-
theless, the construction of predictive models for nonlinear functions,
such as material structure-property mappings, is known to be data-de-
manding, especially when the inputs, e.g., material microstructures
represented as 2D or 3D images, are high-dimensional [4]. Thus, the
added value of predictive models quickly diminishes as the acquisition
cost increases for material samples. We investigate in this paper a
computational approach to generate artificial material samples with
negligible cost, by exploiting the fact that all samples within one ma-
terial system share similar morphology. More concretely, we define
morphology as a style vector quantified from a microstructure sample,
and propose a generative model that learns from a small set of authentic

samples, and creates an arbitrary amount of artificial samples that share
the same distribution of morphologies as the authentic ones.

The key contribution of the paper is the introduction of a mor-
phology constraint on the generative model that significantly improves
the morphological consistency between the artificial and authentic
samples from benchmark generative models. To demonstrate the utility
of the proposed model, we run a case study on the prediction of the
Young’s modulus, the diffusion coefficient and the permeability coef-
ficient of sandstone microstructures. We show that the generated arti-
ficial samples from the proposed model can improve the prediction
performance more effectively than those from a state-of-the-art Markov
Random Field (MRF) model.

As an overview, the proposed model follows the architecture of a
variational autoencoder [5] that learns to encode material micro-
structures into a lower-dimensional latent space and to decode samples
from the latent space back into microstructures. Both the encoder and
the decoder are composed of feed-forward convolutional neural net-
works for extracting and generating local morphological patterns, and
are jointly trained to minimize the discrepancy between the artificial
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and authentic samples. The target morphology is quantified from the
authentic samples by an auxiliary network. The idea of quantifying
material morphology through a deep network is inspired by the style
transfer technique originally developed for image synthesis [6].

The rest of the paper is structured as follows: In Section 2 we review
related work on material representations and reconstruction, based on
which we delineate the novelty of this paper. We then introduce
background knowledge on variational autoencoder and style transfer.
Section 3 elaborates on the details of the proposed model. Section 4
presents a case study on the prediction of sandstone properties, where
we demonstrate the superior performance of the proposed model
against the benchmarks, in both microstructure generation, and the
resultant property prediction accuracy. In Section 5 we summarize
findings from the case study and propose potential future directions.
Section 6 concludes the paper.

2. Background

2.1. Data science challenges in computational materials science

Incorporating data science into material discovery [1] and design
[7] faces unique challenges with high dimensionality of material re-
presentations and the lack of material data due to high acquisition
costs. We review existing work that address these challenges to some
extent.

2.1.1. Challenge 1: Mechanisms for understanding material representations
A common approach to addressing the issue of high dimensionality

is to seek for a representation, i.e., an encoder-decoder pair, for a ma-
terial system: The encoder transforms microstructures to their reduced
representations, and the decoder generates (i.e., reconstructs) them
back from their representations. A good encoder-decoder pair should
both achieve significant dimension reduction, and good matching be-
tween the data distribution (i.e., the distribution of authentic samples)
and the model distribution (i.e., the distribution defined by the de-
coder). This is often feasible for material systems with consistent and
quantifiable morphologies among their samples, as reviewed below.

Existing encoders for material representations can be categorized as
physical and statistical, some of which have led to accelerated design of
various material systems [8–12]. Among all, physical encoders char-
acterize microstructures using composition (e.g., the percentage of each
material constituent) [13,14], dispersion (e.g., inclusions’ spatial relation,
pair correlation,the ranked neighbor distance [15–20]), and geometry fea-
tures (e.g., the radius/size distribution, roundness, eccentricity, and aspect
ratio of elements of the microstructure [17,15,8,21–25]). Among statistical
encoders are the N-point correlation functions [26,18,8,21,22]. Torquato
et al. [27,28,8] show that the microstructure of heterogeneous materials can
be characterized statistically via various types of N-point correlation func-
tions [29,30]. Similar descriptors include lineal path function [31] and

statistics calculated based on the frequency domain using fast Fourier
transformation [32,33]. Another type of statistical encoders are random
fields [34–36], which define joint probability functions on the space of
microstructures. Typical probability models include Gaussian random fields
[37,38,8] which treats binary microstructure images as level sets, and
Markov random fields, where each pixel of the microstructure is assumed to
be drawn from a probability function conditioned on its neighbouring pixels
[35].

Decoding of representations, i.e., generation of microstructure
through existing physical and statistical representations, involves op-
timization in the microstructure space: For physical representations and
N-point correlation functions, a microstructure is searched to minimize
its difference from the target descriptors. For random fields, the gen-
eration can be done by maximizing the joint probability through
Markov chain Monte Carlo simulations [35,36]. While it is shown that
material generation through these representations is feasible
[18,22,8,11], the computational costs for the optimization through
gradient [32,11] and non-gradient [28,39–41] methods are often high.

In addition to the difficulties in decoding, the existing encoders are
not universally applicable, especially to material systems with complex
morphology. More specifically, matching in the representation space
does not guarantee the match in the microstructure space. An example
can be found in Fig. 1, where we compare two-point correlation func-
tions of Ti64 alloy samples and three sets of artificial images (see details
from [35,42,43]). The visually more plausible set has worse match to
the target with respect to the Euclidean distance in the discretized 2-
point correlation space.

These existing difficulties lead to the need for new mechanisms to
define material representations. We propose four metrics for evaluating
the utility of a material representation: interpretability, dimensionality,
expressiveness, and generation cost: Physical descriptors and correla-
tion functions are designed to be interpretable and relatively low di-
mensional, yet may not be expressive enough to capture complex
morphologies and requires optimization during generation; random
fields are relatively expressive (and some permit fast generation [35]),
but are often high-dimensional and less interpretable. Both categories
of representations are material specific, i.e., new representations need
to be manually identified for new material systems. Cang et al. [42]
proposed to learn statistical generative models from microstructures to
automatically derive expressive, low dimensional representations that
enables fast microstructure generation. They showed that a particular
type of generative model, called Convolutional Deep Belief Network
(CDBN) [44], can produce reasonable microstructures for material
systems with complex morphologies, by extracting morphology pat-
terns at different length scales from samples, and decode an arrange-
ment of these patterns (the hidden activation of the network) back into
a microstructure. Nonetheless, CDBNs are trained layer-by-layer, and
thus require additional material-dependent parameter tuning to achieve
plausible generations.

Fig. 1. Comparison of two-point correlation func-
tions among four sets of images. From left to right:
Authentic microstructure samples, samples gener-
ated by a Markov random field model [35], samples
generated by a hybrid model with deep belief net-
work and Markov random field [43], and samples
generated by a deep belief network [42]. Better
matching in the discretized 2-point correlation
space does not indicate better microstructure gen-
erations.
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