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a b s t r a c t

The kinetics of microstructural evolution phenomena like recrystallization, grain growth, and phase
transformation of deformed materials is affected by the characteristics of deformed microstructure. In
fact, average grain size, grain morphology, texture and grain boundary properties of the deformed mate-
rial determine the microstructure characteristics. In this paper, the reconstruction of deformed
microstructure and changes in the microstructure in mesoscale are studied. Accordingly, the normal
growth, topology deformation, and reconstruction of texture and grain boundary misorientation tech-
niques are used to reconstruct the deformed microstructure. Therefore, probabilistic cellular automata
method with hexagonal cells is used to create a microstructure with equiaxed grain morphology followed
by a new modified topology deformation technique. In this technique, the quality and the quantity of the
plastic deformation are considered by applying the deformation gradient tensor to the undeformed
microstructure. Finally, a set of crystal orientations is created using a probabilistic algorithm relevant
to the real texture of the material and then the crystal orientations are assigned to the deformed grains
in such a way that satisfy the misorientation angle distribution. The accuracy of the numerical
approaches is verified by comparing the experimental and the simulated results.

� 2018 Published by Elsevier B.V.

1. Introduction

Plastic deformation of metals and alloys increases the density of
crystal defects and changes the microstructure of the material. The
deformedmicrostructure after cold work provides the driving force
that is needed for annealing phenomena [1]. Different phenomena
like recovery, recrystallization, grain growth and phase transfor-
mation may occur during annealing processes. These phenomena
significantly change the microstructure and mechanical properties
of the material. The deformed microstructure totally determines
the initial state of the system before annealing and it has an impor-
tant effect on the kinetics of microstructure evolution phenomena
[2]. Generally speaking, the grain size andmorphology, grain orien-
tation, grain boundary characteristic and misorientation, and the
stored energy level of the material determine the overall state of
the system in the deformed microstructure [3]. So, the first step
in simulating and modeling of the microstructural evolution dur-
ing the different thermomechanical processes is the determination
of the initial state of the material. Since, in most deformation pro-
cesses, the deformation is anisotropic, a suitable algorithm is

required to reconstruct the microstructural characteristic of the
material before simulation. The design of such a simulation tool,
which has the ability to account for intrinsic properties like energy
and mobility of grain boundaries, microstructure characterizations
like grain size distribution, grain morphology, and micro-texture, is
attractive.

A vast variety of microstructural simulation methods such as
Monte Carlo method, Phase field method, Vertex method and Cel-
lular automata (CA) method have been presented to simulate the
microstructure evolution. Today, the CA method is of interest to
researchers because the different complicated conditions may be
simply and simultaneously applied to the model which is decreas-
ing the calculation time and cost, and simplifying the computing
codes from data storing and algorithm points of view [4]. This
method was firstly introduced by Neumann [5] in 1966 and Wol-
fram [6] in 1986. The method was used for simulating static recrys-
tallization by Hesselbarth [7] and then employed for a variety of
phenomena. Turk and Kugler [8] corrected the CA model and used
it for modeling the effect of the initial microstructure on static
recrystallization kinetics and grain size. Xiao et al. [9] considered
the effect of deformation topology and the grain deformation
procedure on the simulation of dynamic recrystallization by
employing the CA method. Also, Chen et al. [10] studied dynamic
recrystallization by coupling a CA method with a topology
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deformation technique. The effect of thermomechanical parame-
ters on the recrystallization kinetics and grain size has been eval-
uated by taking into account the effect of the topology of the
deformed grains.

In another work, Chen et al. [11] presented a modified CA model
to investigate dynamic recrystallization by using the topology
deformation method. In this model, the coordinate systems of
the cellular model and the material were separately adopted so
that the system would change later during deformation. The grain
topology, the recrystallization fraction, and the average grain size
of Ni-based superalloy during hot deformation were also predicted
by means of the modified model. Recently, dynamic recrystalliza-
tion has been simulated using CA method coupled with topology
deformation technique in order to assess the effect of grain mor-
phology, strain rate and strain [12–14]. Madej et al. [15] proposed
a CAFEM model to predict SRX during the cold deformation of the
low carbon steel after cold rolling. In this model, the FE results
have been considered as input imposed upon the CA model to eval-
uate the recrystallization kinetics.

Also, in some studies, the reconstruction of crystal orientation
of grains and the material texture have been considered and vari-
ous methods have been proposed for modeling the material tex-
ture. Melchior et al. [16] have presented a numerical method to
generate a discrete sampling of the crystallographic texture which
the orientation samplings statistically represent the given orienta-
tion distribution function (ODF). Also, in 2008 a known ODF was
reconstructed in discrete EULER space by Eisenlohr et al. [17]. In
Eisenlohr’s model, the volume fraction of a reconstructed orienta-
tion has been approximated by the ratio of each discrete crystal
orientation zone to the overall sample space using the discrete
ODF representation. For this purpose, the integer approximation
and the statistical methods were used. It was shown that by using
the correlation factor, the integer approximation method was far
better than the statistical one. The correlation factor to assess crys-
tallographic texture for the first time was introduced by Tarasiuk
[18] et al. in 1996. Toth et al. [19] also presented two methods
for the reconstruction of ODF; these included cumulative ODF or
statistical technique and a minimum orientation distance criterion
to predict the texture during plastic deformation. Toth et al.
showed that statistical approach could be more reliable than other
methods of producing the discrete distribution in texture model-
ing. Ivanova et al.[20] by comparing the two methods (component
fit method and orientation grid technique) for the sample of mag-
nesium alloy, illustrated that the first method was more stable and
robust. Lobach et al. [21] theoretically analyzed the quantitative
texture to reconstruct ODF.

The main purpose of this paper is to present a model for recon-
structing the deformed microstructure by considering the initial
average grain size, grain morphology, texture and grain orienta-
tion, and grain boundary misorientation. To reconstruct the initial
microstructure with a suitable initial grain size, the normal growth
method is implemented using probabilistic CA coupled with a new
topology deformation technique. In this work, by means of a nor-
mal growth algorithm, the initial nucleus could be grown accord-
ing to the real microstructure grain size and the initial
microstructure generated with the proposed the growth method.
In order to increase the accuracy of the modeling methods in the
prediction of the microstructure evolution, it is necessary to con-
sider the distribution of the crystalline orientation and the misori-
entation of grain boundaries based on the real material micro-
texture. In this paper, an algorithm is developed for reconstructing
the crystalline orientation of grains and also the misorientation of
grain boundaries. In order to reconstruct the crystalline orientation
of the grains, proportional to the material texture, Euler’s angles of
the grains are determined in such a way that the discrete ODF has
the most consistency with the known texture of the material. Also,

the crystal orientation is assigned to the grains to ensure that the
misorientation distribution represents the known misorientation
distribution of a real material. By using this algorithm for fitting
the crystalline orientation and the misorientation, the initial
microstructure can be obtained close to the actual state of matter.
The details of this model and some possible improvements have
also been discussed.

2. Reconstruction of the deformed microstructure

The first step in microstructure simulation of deformedmaterial
is the reconstruction of the initial microstructure. The initial gen-
eral state of the system has an important effect on the kinetics of
the microstructural evolution i.e. recrystallization, grain growth
and phase transformation. In fact, the initial grain morphology,
the crystal orientation of grains, interface characteristics and the
energy level of matter determine the general state of the system.
The microstructure with a given average grain size and morphol-
ogy is reconstructed regards to the structure of the real deformed
material. So, a variety of algorithms like normal growth based on
CA method, topology deformation and crystal orientation recon-
struction were used.

2.1. Normal growth

To reconstruct the initial microstructure with a suitable initial
average grain size, the normal growth method based on the proba-
bilistic CAmethod is used. In this method, space is divided into sev-
eral regular sub-domains are called cells. State variables which are
defined the physical states of the cells i.e. the crystal orientation or
the state of recrystallization are attributed to the cells. The time is
discretized and in every time increment, changing of the cell states
are studied according to the overall system state. The state change
rule of the cells is determined by the rule of physics governing the
grain boundary migration. According to classical theory of bound-
ary migration, the velocity of the grain boundary migration is
described by the Turnbull’s rate equation as follows [3]

v ¼ mp ð1Þ
where m is the grain boundary mobility, and p is the driving pres-
sure acting on the grain boundary. The mobility of grain boundary
is considered as a function of temperature and grain boundary
characteristics, so [22]

m ¼ m0 exp
�Qd

RT

� �
ð2Þ

where Qd is activation energy of grain boundary migration, m0 is
mobility constant, T is the absolute temperature, and R is the gas
constant. The driving pressure can be derived by summing the driv-
ing pressure due to the grain boundary curvature, driving pressure
of stored energy which is related to the difference of Gibbs free
energy density of the material located at the two sides of the grain
boundary [3]. In this paper, probabilistic cellular automata
algorithm was used for determining the state change rule. In this
algorithm, the state of cell i in the time step of kþ 1 ‘‘nkþ1

i ” is
determined by neighbors state at time step k [23], so

nkþ1
i ,niðtkþ1Þ ¼

nki if Wk
i 6 0

n if Wk
i > ðRjR�½01�Þ

(
ð3Þ

where R is a random number between zero to one, n is the new
state of the cell and may be derived using the state of the trans-

formed neighbors and Wk
i is the local probability of state change

and it’s calculated as
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