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A B S T R A C T

We describe a self-contained procedure to evaluate the free energy of liquid and solid phases of an alloy system.
The free energy of a single-element solid phase is calculated with thermodynamic integration using the Einstein
crystal as the reference system. Then, free energy difference between the solid and liquid phases is calculated by
Gibbs-Duhem integration. The central part of our method is the construction of a reversible alchemical path
connecting a pure liquid and a liquid alloy to calculate the mixing enthalpy and entropy. We have applied the
method to calculate the free energy of solid and liquid phases in the Al-Sm system. The driving force for fcc-Al
nucleation in Al-Sm liquid and the melting curve for fcc-Al and Al3Sm are also calculated.

1. Introduction

Reliable free energy for both solid and liquid phases of an alloy is
fundamental to achieving a microscopic understanding of freezing and
melting phenomena, which remains a significant challenge in con-
densed matter physics and materials science [1]. The origin of the
difficulty in free energy calculations is that free energy cannot be ex-
pressed as a simple average of a physical quantity over the phase space
that can be conveniently evaluated in a single simulation with a stan-
dard sampling technique, such as Monte Carlo (MC) or Molecular Dy-
namics (MD) [2]. A variety of methods have been proposed for free
energy calculations, emphasizing on computing the free energy differ-
ence between the target system and a reference system. These methods
include multistage free energy perturbation [3], particle insertion/de-
letion [4–6], thermodynamic integration (TI) [7], Bennett analysis
[8,9], weighted histogram [10], umbrella sampling [11], and adiabatic
switching [12]. In addition to these equilibrium approaches, Jarzynski
established a nonequilibrium equality to express the free energy dif-
ference in terms of the irreversible work along paths connecting the two
systems. A path-sampling technique with the application of umbrella
sampling has been formulated to improve the convergence of the ori-
ginal Jarzynski method [13], and has been applied on clusters [14],
glasses [15] and crystalline alloys [16]. For binary fluids, alternatively,
people have used relatively efficient methods such as energy parti-
tioning method [17] and classical density-functional approach [18] to
estimate the free energy.

When selecting a specific method, one strikes a balance between
efficiency and accuracy according to the problem at hand. The main
objective of the current paper is to develop a self-contained algorithm
to accurately determine the free energy of both liquid and solid phases,
in order to establish phase equilibria. The algorithm will be developed
within the framework of TI, coupled with extensive GPU-accelerated
MD simulations [19,20]. TI is based on the idea that derivatives of free
energy are often well-defined ensemble averages that are measurable in
a single MC or MD simulation. In this method, one evaluates the deri-
vative of free energy along a reversible path connecting the reference
system and a target realistic system. The integration of the derivative
along this path gives the free energy difference between the two sys-
tems [2,7].

In principle, one can obtain the absolute free energy of solid and
liquid phases by referencing to a harmonic crystal and the ideal gas,
respectively, whose free energy can be analytically derived. However, it
is generally not a good idea to treat the liquid and solid phases in se-
parate frameworks when it is the free energy difference that controls
phase stability [18]. Furthermore, many phenomena of interest such as
crystal nucleation and growth occur when the liquid becomes super-
cooled, when it behaves so differently from the ideal gas that one needs
to be very careful to obtain the required accuracy by using the ideal gas
as the starting point. Here, we choose the harmonic crystal, such as the
Einstein crystal [21,22] as a global initial reference system, since it can
provide a reliable reference for pure solid phases in most cases. The
general strategy is as follows: first, we calculate the absolute free energy
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of the solid phase directly using an Einstein-crystal reference; next, we
determine the free energy difference between the solid and liquid
phases at a specific state point; and finally, we use Gibbs-Duhem in-
tegration [23] to extend to other state points, such that all the free
energy calculations are based on the same initial reference system.
While the free energy difference at an arbitrary state point can be
calculated by methods such as pseudosupercritical path integration
[24,25], in this paper, we choose a special state point: the melting
point, at which the free energy difference is zero. The accurate melting
point is determined by monitoring the migration of a solid-liquid in-
terface.

Next, we construct an “alchemical” path to transform a pure liquid
to a liquid alloy, and apply TI to evaluate the mixing enthalpy and
entropy during the process. Similar methods were frequently used
previously to analyze affinity change upon substitution of certain atoms
or functional groups in chemical or biochemical systems [26–28]. This
strategy, together with a reliable method of determining solid/liquid
free energy difference in single-element systems, forms a self-contained
way of establishing phase equilibria in alloys. The algorithm is sum-
marized in a flowchart shown in Fig. 1.

We choose the Al-Sm system for the current study, which is a typical
member of Al-RE systems (RE: rare earth). At ∼10 at% Sm, this system
can form metallic glasses or nanocomposite materials with low-density-
high-strength properties [29]. The evaluation of thermodynamic sta-
bility of relevant phases is necessary to understand the complicated
phase selection of this system especially under supercooling, which is
key to achieving the desired compositions and microstructures.

2. Computational details

All simulations are performed using the MD technique with a
timestep of 2 fs, as implemented in LAMMPS GPU-accelerated package
[19,20]. Systems are fully equilibrated in 500,000 timesteps in cano-
nical ensemble (NVT ) or isothermal-isobaric ensemble (NPT ) with the
Nose-Hoover thermostat [30,31]. The main purpose of performing MD
simulations in this work is to calculate the ensemble average of certain
quantities (details are shown below), which is equivalent to the tem-
poral average under the ergodic hypothesis. The average is collected in
another 500,000 timesteps after the equilibrium is reached. For effi-
cient energy and force calculations, we use semi-empirical interatomic
potential in the Finnis-Sinclair form [32], which was developed to re-
produce pure Al properties, energetics of Al-Sm intermetallic alloys and
Al-Sm liquid structures [33]. This potential was particularly designed to
treat Al-rich alloys (at% Sm < ∼10%).

3. Pure fcc-Al and Al liquid

We start with the calculation of free energy of the fcc-Al phase with
TI, using the Einstein crystal as a reference system. The Helmholtz free
energy of a classical Einstein crystal can be determined analytically as

=F Nk T hν k T3 ln( / )B0 B , with N the number of atoms, h the Planck
constant, ν the vibrational frequency and kB the Boltzmann constant. To
implement TI, one generates intermediate systems with potentials

= − +U λ λ U λU( ) (1 ) E Al, where UE and UAl stand for the potentials for
the Einstein crystal and the real Al system, respectively. Then, the
difference in Helmholtz free energy between the two systems can be
expressed as
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In Eq. (1), the subscript s stands for solid, and 〈⋯〉λ NVT, denotes the
canonical ensemble (NVT ) average of fcc-Al with respect to the inter-
mediate potential U λ( ). The volume is fixed at the equilibrium volume
at ambient pressure, which is determined separately via MD simulation
with the real FS potential for Al under NPT conditions. In this way, the
Helmholtz free energy is equal to the Gibbs free energy at the same
temperature.

As an example, we show in Fig. 1 the integrand of Eq. (1) for the
implementation of TI at 800 K. The vibrational frequency ν for the
Einstein crystal is chosen to be 5 THz, which is close to the principal
peak of Al phonon density of states [34]. The integration, performed
based on cubic spline interpolation of discrete data points collected by
separate MD runs (red open circles), gives the free energy difference
between fcc-Al and Einstein crystal reference = −FΔ 3.872 eV/atom
(see Fig. 2).

To calculate the free energy of Al liquid, we first determine the
melting point (Tm) of fcc-Al under ambient pressure, at which the dif-
ference in Gibbs free energy between the solid and liquid phases

=GΔ 0. Following the method described in Ref. [35], we plot the solid-
liquid interface (SLI) velocity, obtained from MD simulation for the
[1 0 0] direction, as function of temperature (see Fig. 3). The melting
temperature determined from these data is 915.7 ± 0.5 K, which is
slightly lower than the experimental value (933 K). The Gibbs free en-
ergy difference at other temperatures is readily available by integrating
the Gibbs-Helmholtz equation
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where HΔ is the enthalpy change in the liquid and solid phases, or, the
latent heat. The absolute free energy for Al liquid can be obtained by
combining the information on solid-liquid free energy difference and
the absolute free energy for the solid fcc-Al calculated previously. The
final results are shown in Fig. 4

Fig. 1. Flowchart summarizing the algorithm for our free energy calculation.

Fig. 2. The integrand of Eq. (1) for fcc Al at T= 800 K. Open circles are data
points collected in separated MD runs. The solid line is a cubic spline inter-
polation.
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