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A B S T R A C T

From the early models of electronic stopping power to the current first principles simulations, the techniques
evolved to increase the range of validity and to reduce empiricism. Thanks to a combination of theoretical
advances provided by Time Dependent Density Functional Theory and the development of numerical codes, it is
currently possible to predict electronic stopping power for realistic materials by performing direct simulations of
the electron excitation processes beyond linear response, and including electronic band structure effects.
Electronic stopping power is an important quantity used to predict and understand the effects of particle ra-
diation in matter. First principles calculations of electronic stopping power can be applied to any atomistic
system, solids, liquids and alloys. This review aims to help graduate level students and researchers immerse
themselves into state-of-the-art techniques to computationally model and calculate electronic stopping power.

1. Introduction

Stopping power is a measure of the ability of a material to slow
down energetic particles that travel in its interior. Given a certain type
of energetic particle and a target material, stopping power is the
amount of kinetic energy lost in relation to the thickness of material
traveled. Stopping power is an important quantity used to predict and
understand the effects of particle radiation in matter, ion ranges [1], the
energy deposited, and ultimately the damage produced by energetic
particles in diverse contexts, such as nuclear technology [2] and med-
icine [3]. The phenomenon of stopping power also gives us a glimpse on
how matter reacts far from equilibrium, and in particular on the nature
of the dynamic interaction between ions and electrons.

Stopping power is a general concept, although the term is normally
utilized for charged particles (ions or electrons), interacting cou-
lombically with the material medium. The stopping power depends on
the type of charged particle or projectile (usually some ionized atom),
the target material or host (phase, density and temperature conditions),
and, all other things being equal, it depends on the kinetic energy
(typically in keV or MeV) or equivalently in the velocity of the charged
particle (typically in Å/fs or a E /ℏ0 h ). In crystalline materials, there is an
additional dependency on the relative orientation of the crystal with
respect to the main projectile velocity direction [4]. This orientation
dependency is natural if we think of the stopping power as an effect that
arises from interactions taking place at atomic scales, specifically by a
collection of sequential or simultaneous many-body Coulomb collisions.

Microscopically, this energy loss is the effect of a retarding force due

to collisions with particles that compose the material. Therefore, stop-
ping power is dimensionally a force and commonly expressed in units of
energy over distance (for example, in electronvolt per angstrom eV/Å
or hartree per Bohr radius E a/h 0).

Our understanding of materials at the atomic scale consists in
modeling, at different levels of detail, the dynamics and structure of
atoms (ions) and electrons. Due to the vastly different individual
masses, ions and electrons behave very differently. Many properties of
materials can be explained to an acceptable degree by using the theory
of classical mechanics for the ions and of quantum mechanics for
electrons [5,6].

At normal conditions for a material, its ions move relatively slowly,
with characteristic particle thermal and sound velocities in excess of
10 m/s3 , while electrons are relatively fast, with effective Fermi velocity
vF (for valence or conduction electrons) in the order of 10 m/s6 .
Naturally, this defines two regimes for the stopping process (Fig. 1):
One at low velocity, the nuclear stopping regime; in which the charged
particle mainly loses energy through an effective interaction with the
host ions (while the electrons respond instantaneously without under-
going noticeable excitations), and another regime at high velocity, the
electronic stopping regime; in which the charged particle loses energy by
partially screened Coulomb interactions with the electrons while the
host ions simply have no time to react due to their large inertia (mass).
In both regimes, the charged particle interacts equally with electrons
and ions (through Coulomb forces), the main difference is the precise
dynamical process involved in the energy loss (screened lattice excita-
tions vs. electronic excitations, respectively).
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As long as the effective atomic interactions are known, nuclear
stopping can be modeled by classical ion-ion interactions. Pure nuclear
stopping is, from a theoretical standpoint, a solved problem; in practice,
all the difficulties that remain are reduced to the calculation of the
effective interactions (e.g. ab initio potentials [7] and ZBL potentials
[8]). Meanwhile, electronic stopping power requires a different level of
description and modeling.

In this brief review, my aim is to help graduate level students and
researchers immerse themselves into state-of-the-art techniques to
computationally model and calculate electronic stopping power; giving a
glimpse of the type of capabilities that these techniques provide.

Radiation effects in materials is a challenging scientific problem [9],
since it ranges from the behavior of electrons and atoms under non-
equilibrium damage events to the macroscopic impact of those defects,
spanning length and time scales that range over many orders of mag-
nitude [2]. Electronic stopping power is one aspect of the radiation
effects, that sits at the smallest time (fs) and length scale (nm).

2. History and analytic models

The calculation of electronic stopping power predates the inception
of quantum mechanics, and it is intimately related to its development.
For example, the Rutherford landmark experiment (1911), where the
deflection of alpha particles passing through a thin gold film was
measured, can be viewed as a stopping power experimental setup [10].
In this crucial experiment, the structure of the atom was probed and the
coulombic nature of the interaction between the charged particle and a
relatively massive central nucleus was revealed. By extension, the
coulombic nature of the electrons bound to atoms was also accepted.
Other historical reviews are available in the literature [11,12]; the re-
view presented here simply paves the way for the following sections
that describe the theory and results of the new methods for the calcu-
lation of electronic stopping power.

The early models of the atom and the electrons therein were entirely
or partially classical [13], and the first stopping power models for
atoms in solids were no different. After the early attempts of Rutherford
[10], Thomson [14], and Darwin [15], Hans Bethe (1930) derived an
electronic stopping power model by imagining the material as a col-
lection of classical electrons that, in this picture, are somehow not
bounded and initially static [16,12]. In this model, the interaction be-
tween the projectile and the material’s electrons produce a sequence of
binary Coulomb collisions in which the projectile loses energy, since
each collision transfers energy to the host electrons. Each binary col-
lision is elastic (for the system projectile-electron); however, since the

projectile always finds new electrons at rest which to push forward, the
final result looks like an inelastic effect producing an average retarding
force on the projectile.

Coulomb scattering (Rutherford scattering) is characterized by long
range interactions and by formally diverging cross sections. This makes
Bethe’s picture impractical to apply directly, since the incoming pro-
jectile would simultaneously interact with all electrons in the material,
and stopping power would result to be a diverging quantity. In the real
system, several phenomena conspire against this divergence. First, the
interaction is many-body; electrons dynamically screen each other de-
fining a length scale (Debye length) that cuts-off the long range inter-
action. Second, electrons are not free particles; there is a minimum
excitation energy (I) required for the electrons to be freed from their
discrete (e.g. quantum) bound states. Collectively, these types of cutoffs
are called Coulomb logarithms [17]. The former cutoff is important in
plasmas, the latter is more important in materials.

Taking into account the minimum excitation energy, the Bethe
formula for the electronic stopping power S as a function of velocity v
resulted in:
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However crude, the Bethe formula sets up the language commonly
used to describe electronic stopping power [12]. First, the stopping is in
direct relation to the density of electrons n and the charge of the pro-
jectile Z| |. Second, it establishes an inverse proportion with v2 at large
velocities, which is the correct non-relativistic limit (me and e are the
mass and charge of the electron, =k πεe
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is the Coulomb’s constant.)
The formulation can be straight forwardly extended to relativistic re-
gimes [12] and it is derived purely classically, except for the quantity I.
I (with units of energy) could introduce effectively the physics of
screening and quantum mechanical effects. The formula diverges (to
negative values!) when <v I m/2 e , defining its own lower bound for
the range of validity.

For the low velocity limit, a separate formula was found by Fermi
and Teller (1947) [18]
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The expression is linear in v and, therefore, must breakdown pre-
sumably near ≳v vF, yet for the first time it takes into account the
degenerate nature of electrons.

Ambiguities appear when these formulas are interpreted to be ap-
plied to a real material. For example, n can be interpreted to be the all-
electron density or just the valence-electron density; and Z could be the
charge of the bare ion (atomic number) or some charge resulting from
partial ionization (effective charge). Additionally, these two quantities
could be functions of the velocity themselves (Z v( ) and n v( )); as it is
expected that the number of participating electrons and the effective
charge changes continuously with the velocity [19]. These parameters,
in the context of analytic models, are usually flexibly or empirically
interpreted for different experiments and regimes.

Historically, models evolved to increase their range of validity of the
model and to reduce this empiricism, culminating in the first principles
calculations of the electronic stopping power that I will describe in the
next section. The first milestone in this path was the general linear-
response treatment by Lindhard (1963) [20,21]. In his seminal papers,
Lindhard demonstrated that the retarding force can be calculated from
the interaction of a moving ion with the density perturbation that itself
produces in an electron gas. The Lindhard stopping formula for the
homogeneous electron gas depends on a linear dielectric response ε
[22].
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Fig. 1. Qualitative picture of stopping power as a function of projectile velocity.
At high velocities, when the projectile travels at speeds comparable to those of
the electrons, the electronic stopping power dominates. At low velocity nuclear
stopping becomes relatively more important depending on the type of pro-
jectile.
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