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A B S T R A C T

We propose a computational method for studying crystal nucleation in glasses and supercooled liquids, com-
bining the techniques of cluster formation via Monte Carlo, Steinhardt order parameter biasing, and an implicit
solvation model. Each of these techniques calculates an important contribution to the overall nucleating free
energy. This hybrid Monte Carlo technique is applied to the canonical example of a lithium disilicate glass-
ceramic, where it is found that the cluster formation and cluster-to-crystal transition energies are approximately
equal. The known crystal precursor, lithium metasilicate, has a smaller thermodynamic barrier to nucleation
compared to that of lithium disilicate. The solvation energy is small compared to the formation and crystal-
lization energies; yet the metasilicate solvation energy is much lower, indicating easier precipitation compared
to the disilicate cluster. Our hybrid Monte Carlo approach is generally applicable to study the nucleation and
crystallization processes in any arbitrary glass or supercooled liquid.

1. Introduction & Background

The nucleation phenomenon occurs throughout natural and manu-
facturing processes ranging from rain droplet formation to glass devi-
trification. Many reviews, special features, and books have been de-
voted to explaining the nucleation process [1–15]. There are still
unanswered questions in this field, especially pertaining to the physics
and chemistry of the nucleating cluster. With classical nucleation
theory (CNT), the nucleating cluster is treated as a distinct macroscopic
object containing the crystallizing atoms or monomers. The interface
between the cluster and the surrounding supersaturated liquid is de-
fined as a vanishingly thin interface. One of the deficiencies of CNT is
the capillarity approximation, which states that the interplay between
the cluster’s surface tension, σ, and the difference in free energy be-
tween the liquid and crystal, Δ g, completely describes of crystal nu-
cleation free energy, GΔ N (where N is the number of atoms or mono-
mers). For a spherical cluster of radius r, the nucleating free energy
(NFE) is described by:

= −G πr σ πr gΔ 4 4
3

Δ .N
2 3

(1)

The first and second terms on the right-hand side of Eq. (1) are the
surface and the growing bulk terms, respectively. Initially, for small
clusters, the thermodynamic barrier is dominated by the surface term.

The condition when Eq. (1) reaches an extremum corresponds to the
critical cluster size, rc. The clusters smaller than rc tend to shrink and
dissolve. Once the critical size is met, the cluster becomes thermo-
dynamically stable. This raises another problem with CNT, viz., de-
fining at what size the macroscopic nucleating phase begins. The small
length scales associated with nucleation are difficult to probe experi-
mentally since the volume fraction of critical clusters is well below the
experimental limits [14,16]. Furthermore, within these small length
scales is another possible deficiency of CNT: a lower energy metastable
phase that could act as heterogeneous nucleating sites for the stable
phase [17,18]. Atomistic simulations could therefore offer some insight
into these first steps of cluster nucleation.

Both Monte Carlo (MC) and molecular dynamics (MD) techniques
have previously been used to study the nucleation process [19–23]. MC
and MD techniques bring particular advantages and disadvantages. For
example, MD is efficient for modeling condensed phase systems and has
been shown to produce good results in the study of glass-ceramic nu-
cleation [21]. However, the choice of MD can be rather limiting since
closed ensembles such as the canonical (NVT) or isothermal-isobaric
(NpT) ensemble are typically used. When a closed ensemble is used to
describe the cluster growth process, specific atoms or monomers are
removed from the surrounding glass or liquid, creating a depletion
layer. This method of creating a depletion layer is an artifact of the
simulation [9,21,24–26]. The dynamics of this depletion layer would
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have a concentration gradient, which sets up a diffusive flux of that
particular atom towards the cluster. Similarly, if the cluster dissolves,
the concentration gradient would be reversed, setting up a flux of these
atoms away from the cluster. This characterizes the typical solvation/
dissolution of the pre-critical clusters. Periodic boundaries and constant
number of particles results in creating a strong unphysical depletion
layer in the phenomenological model [9,21,24–26]. To ensure that the
closed system is representative of the nucleation process and that it
does not cross periodic boundaries (leading to artificially high rates);
one needs to test convergence with different system sizes.

On the other hand, sophisticated MC methods have been developed
incorporating different sampling techniques to explore open statistical
ensembles, including the grand canonical (μVT) ensemble. These
techniques have been successfully applied to a variety of problems,
including gas-liquid nucleation [16,20,23,22]. However, a major
drawback for application of grand canonical Monte Carlo in condensed
phase nucleation is that the translational and particle creation/deletion
moves tend to have a high rejection rate due to the close proximity of
neighboring atoms. To address this shortcoming, a more sophisticated
(biased) MC technique [27,28] or a combined MC-MD algorithm
[29,30] would need to be adopted to investigate the fundamental
physics of crystal nucleation at the atomic scale.

It has been postulated [31,32] that crystal nucleation in glassy
systems could be studied through use of a Gibbs Monte Carlo approach.
A comparable approach, Grand Canonical Monte Carlo (GCMC), has
previously been implemented by Chen et al. [19] to study water vapor
to liquid nucleation. However, computational efficiency is still a major
concern for Monte Carlo-based modeling of condensed phase systems at
the atomic scale. Instead of applying brute-force computation, here we
consider the various contributions to the fundamental NFE equation
and choose specific techniques that are most appropriate for each term.
Tanaka [33] divided the crystallization process into two separate parts,
the crystal bond orientation and translational ordering (density fluc-
tuations), showing that these are critical steps in the pathway for crystal
nucleation in liquids. Specifically, a nucleating cluster would pre-
cipitate from the liquid phase by density fluctuations (cluster forma-
tion), and eventually become a stable crystal by local bond orientation
(cluster to crystal transition). As the nucleation process occurs, the
solvent interacts with the cluster. Applying an implicit solvation model
to the cluster, one could use GCMC in the condensed phase and main-
tain its computational efficiency by only simulating only the important
cluster formation physics. The work of crystal formation, W, is a
function of these three variables:

= +

+

W Cluster Formation Cluster to Crystal Transition

Cluster Solvation (2)

It should be mentioned that the strain energy, being the density
difference between the developing cluster and surrounding glass melt,
would increase the barrier to nucleation. For lithium disilicate the
strain energy is near zero at the maximum nucleating temperature
(T=732 K) [34]. Since the strain energy increases as the temperature
decreases, this method may be lacking lack in such cases. Following Eq.
(2), the Methods section is divided according into three discrete sub-
sections for each of these three contributions. The hybrid GCMC tech-
nique [19,20] is used [23,22] to (a) create the cluster, (b) calculate the
energy needed to transform the cluster into a crystal [35,36], and (c)
apply an implicit glass solvation model [37]. Using this approach to
estimate the nucleation thermodynamic barrier, we focus our simula-
tions on a [18,38,32,39,8,40,3,41,18,42] lithium disilicate glass-
ceramic system.

Glasses near the stoichiometric lithium disilicate (Li2O 2SiO2)
composition nucleate both lithium metasilicate (Li2O SiO2) and lithium
disilicate crystals [18]. It has been postulated that the metasilicate
phase is a metastable precursor precipitate [41,43]. From the literature,
it is clear that the lithium metasilicate phase is transient, lasting only a

few hours at nucleating temperatures around 454 °C and disappears
during higher growth stage heat cycles. Soares et al. [18] showed that
the formation of the metasilicate does not play a role in the lithium
disilicate nucleation pathway. However, why does the metasilicate
phase precipitate first and how does its thermodynamic landscape
compare to that of the disilicate?

2. Methods

2.1. Cluster formation

Determining how the atoms form into a cluster uses a well-estab-
lished grand canonical Monte Carlo code named General Nucleation
[44]. The details of the code can be found in Refs. [19,20,22,23,45];
here, we will just review a few of the key highlights of the program. The
approach utilizes the grand canonical ensemble (similar to the Gibbs
approach) with some added features of the Aggregation-Volume-Bias
Monte Carlo (AVBMC) and Histogram-Reweighting (HR) [19] techni-
ques with a self-adaptive umbrella sampling (US) algorithm [20]. For
our test case of lithium disilicate nucleation [39], the internal glass-
ceramic nucleation rate occurs on the order of 1010 nuclei/m3/sec; for
the smaller length scale afforded by simulation this can be translated to
10−8 nuclei/nm3/ns! Since nucleation is therefore a very rare event, it
is intractable to solve this problem by any conventional simulation
approaches, regardless of the size of the supercomputer. This empha-
sizes the importance of accessing long-time scale events, which must
overcome large free energy barriers. This leads to the low probability of
cluster formation near the critical nucleus size and hence the low
probability of precipitating a new crystalline phase. To circumvent this
problem, one can employ an umbrella sampling (US) free energy-based
method [46]. In this case, the General Nucleation Monte Carlo code
[44] samples the cluster size distribution evenly, and the umbrella
potential is chosen to be the additive inverse of the nucleating cluster
free energy, which is solved iteratively.

However, there is another difficulty when modeling a liquid-solid
system with nano-heterogeneities. Relaxation in undercooled liquids is
facilitated by “cooperatively rearranging regions” (CRR) in the system
[47,48,49]. The liquid has a continuum of cluster-like semi-relaxed
fluctuating structural species in which the energetic and entropic fac-
tors can differ greatly. If one models this by force-driven diffusion used
in molecular dynamics [50] or random displacement moves applied by
Metropolis Monte Carlo [51], the simulation techniques lack the ability
to model the balance between the entropic factor (e.g., cluster forma-
tion/growth) and the energetic term (e.g., cluster shrinkage), leading to
problems when simulating the microphase evolution of the system. The
AVBMC approach has been developed to tackle this problem where the
space surrounding the cluster is divided into associating (Vin) and non-
associating (Vout) volumes that allow the transfer of atoms between the
microphase regions. The volume term (the entropic factor, viz., a ratio
of the associating and non-associating volumes) and the Boltzmann
weighting factor (the energetic contribution, exp(−ΔE/kT)) are used in
the transition probability to enhance the sampling for the MC particle
addition/subtraction moves.

When the AVBMC move is selected, one of two possible routes could
be executed based on equal probabilities: (1) cluster addition (out→
in), or (2) cluster subtraction (in→ out). Then a target particle j is
randomly selected in the cluster. If this is a cluster addition move, then
the code randomly selects a particle from the ideal liquid phase and
places it inside the Vin volume near j. If this is a cluster subtraction
move, the code randomly chooses a particle from within the Vin region
of j. Then the energy change between the current configuration A and
the trial configuration B is calculated, i.e., ΔE= EB− EA. Let us define
Nin as the total number of particles in the Vin regions of the cluster,
which sums to N− 1 (N is the total particles of the cluster, as j is ex-
cluded), and μ is the chemical potential of the liquid phase. The trial
move is accepted with the following probabilities:
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