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A B S T R A C T

The Hohenberg-Kohn theorems posit the ground state electron density as a property of fundamental importance
in condensed matter physics, finding widespread application in much of solid state physics in the form of density
functional theory (DFT) and, at least in principle, in semi-empirical potentials such as the Embedded Atom
Method (EAM). Using machine learning algorithms based on parametric linear models, we propose a systematic
approach to developing such potentials for binary alloys based on DFT electron densities, as well as energies and
forces. The approach is demonstrated on the technologically important Al-Ni alloy system. We further demon-
strate how ground state electron densities, obtained with DFT, can be predicted such that total energies have an
accuracy of order meV atom−1 for crystalline structures. The set of crystalline structures includes a range of
materials representing different phases and bonding types, from Al structures to single-wall carbon nanotubes.

1. Introduction

Density functional theory (DFT) exploits the Hohenberg-Kohn the-
orems by casting the ground state energy of an interacting system in an
external field as a unique functional of its electron density [1]. This
approach has been successfully used to obtain ground state properties
of materials, discover unknown phases via methods such as AIRSS [2]
and USPEX [3] and to perform high throughput calculations which
systematically scan entire phase diagrams using methods such as
AFLOW [4], AiiDA [5] and the materials project [6] among others. In
addition to its ubiquitous use in DFT, the ground state electron density,

rη ( )GS , also finds application in methods like Bader’s atoms-in-mole-
cules analysis and Laplacian-based critical points bond analysis [7].
Pure, or orbital-free (OF), DFT retains functionals of only the electron
density, while the Kohn-Sham (KS) approach expresses the kinetic en-
ergy functional in terms of non-interacting single particle wave func-
tions [8]. Both OF DFT and KS DFT methods minimize constrained
expressions of the total energy until rη ( )GS is found. The improved
accuracy of the KS wavefunction-based kinetic energy term, however,
comes at a significant computational cost, ultimately limiting the size of
any system that can tractably be studied. The method described in this
paper aims to circumvent this expensive self-consistent field (SCF)
minimization and to approximate rη ( )GS directly from a given structure.
Throughout this work, we use CASTEP [9] and PROFESS [8] for the
training and cross validation of linear models reproducing rη ( )GS for KS
and OF DFT calculations respectively.

To our knowledge very few attempts to rigorously regress rη ( )GS

from ab initio calculations have been made. Recently, Brockherde et al.
[10] adopted a kernel-based approach to learn weights for a basis
function representation of rη ( )GS for H2 and H2O as well as small hy-
drocarbons. They cast the atomic structures into a scalar field, rv ( ),
consisting of squared exponentials and learned the basis function
coefficients of their representation for rη ( )GS given rv ( ). Another at-
tempt was made by Mitev et al. [11] who approximated rη ( )GS using a
non-linear parametric model based on the 3 s atomic orbitals for fcc Al.
Although little quantitative measure of the error in rη ( )GS was given, a
surprising transferability was demonstrated in projections of rη ( )GS
along high symmetry crystal directions, with the electron density pre-
dictions, rη ( )pred , closely resembling rη ( )GS of vacancy, divacancy and
adatom defects, without these structures being present in the training
set. While the Embedded Atom Method (EAM) potential given by Mitev
et al. made reasonable predictions, the contents of its training set were
not explicitly given and thus it is unclear if the transferability of the
electron density prediction translates to a similar transferability of their
potential.

Empirical methods to calculate the total energy of a system rely on
forming approximations of the energy per atom R r rE ( , , )i i c as some
multivariate expression of the positions of the atoms under considera-
tion R and those surrounding the atom at ri to within some finite dis-
tance rc. As might be expected, the more general the multivariate ap-
proximation to R rE r( , , )i i c , the more accurate it can be, at the risk of
overfitting. Rigorous attempts to approximate high-dimensional mul-
tivariate expressions for R rE r( , , )i i c have been seen with notable success
particularly in the application of kernels which employ Gaussian ap-
proximation potentials [12,13] and deep neural networks [14]. Both
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methods use the atom positions and numbers as features in their map.
Consider if instead, one were to use rη ( )GS , which we assume is already
known. An empirical DFT-like map could be imagined with complete or
partial integrals over the crystal cell. This idea in fact, is already em-
bodied in existing classical potentials, such as the EAM, the Modified
Embedded Atom Method (MEAM) [15] and Angular-Dependent Po-
tentials [16], where usually physical electron densities of complete
structures are not approximated explicitly. Mitev et al. noted this too
and employ their approximation of rη ( )GS to a novel EAM-like potential
for fcc Al.

In this work, we demonstrate how parametric linear models with
Bayesian regression can be used to approximate rη ( )GS for a range of
crystalline and high symmetry structures with different bonding types
including: Al (fcc, bcc and hcp), NaCl, BaTiO3, α -W & W3O, H2 crystal,
graphite and single-wall carbon nanotubes (SWCNTs). The resulting
approximation of rη ( )GS for a range of systems leads to analytical
functions that can be used to estimate rη ( )GS . Unlike conventional KS
DFT, our model complexity scales linearly with the number of atoms
and rη ( )GS can straightforwardly be approximated at any arbitrary
position r . Finally, we demonstrate explicitly for the Al-Ni system that
EAM potentials can be developed to accurately reproduce DFT energies
and forces based on our regression of rη ( )GS near atom cores.

2. Theory and algorithms

2.1. Linear models and η r( )

In the following we show how the “design matrix” Φ can be set up to
regress electron densities using parametric linear models. Since the
Bayesian treatment of regression provides a theoretical background to
regularization and allows for model comparison [17], it will be dis-
cussed as well. Relevance vector machines (RVMs) [18] are one of a
range of linear Bayesian models used for regression [19]. They are
particularly useful since they allow for sparse solutions of large basis
sets, scaling linearly in the number of observations, and can themselves
be seen as a special case of the expectation-maximization algorithm
[20].

At the heart of assuming linear models for the approximation of
rη ( )GS is that a linear superposition of functions can be used to describe

the electron density in the first place. Specifically, and in contrast to
Brockherde et al. [10], we consider multivariate functions of the atomic
positions and atom species explicitly. Importantly, we construct mul-
tivariate functions that remain invariant to arbitrary rotations and
translations of all atomic positions considered as contributing to rη ( )GS .

To remain in keeping with the common style of notation used in
machine learning, we consider for now the ground state electron den-
sity at r as the n th observation ρn in a larger set of density values. The
aim of the regression with linear models is then to obtain a vector of
weights w, of size M , which allows for the calculation of the nth
electron density value ρn given numerical features, xn, describing its
neighborhood. xn may contain the spatial distances to the respective L
neighboring atoms paired with their species or, generally, any other
features. Using some basis set of non-linear functions, one can create a
map � �↦ = …ϕ x x xϕ ϕ( ): [ ( ), , ( )]L M

M
3

1 to the M-dimensional feature
space. The linear model can then be defined as = ϕ x wρ ( )·n n . If one
includes uncertainty in the form of a noise parameter ε which is dis-
tributed normally as N β(0, ) with noise level β, in the following de-
noted as N∼ε β(0, ), we find the Bayesian linear model as:

= +ϕ x wρ ε( )·n n (1)

Considering N observations, we can form the vector ρ. The neigh-
boring information together with a chosen basis forms the design matrix
Φ, where = xϕΦ ( )nk k n . Distributing the kth weight normally as

N∼w α(0, )k k , we can constrain each basis function individually. This
is at the core of the RVM as originally proposed by Tipping and Faul
[18,21,22]. The first step in the iterative process is the calculation of

the weights, which can be obtained analytically because both the noise
and the weight distributions are Gaussians. Given the new weights,
the hyperparameters α and β are calculated using the type-II maximum
likelihood. It can be shown that unique maxima regarding α can be
utilized to update, remove or include basis functions [21,22].

To ensure translational and rotational invariance of ϕ x( ), with re-
spect to the reference frame of x , we must choose appropriate values of
ϕk. As in classical dynamics, we ensure translational invariance by
adopting displacement vectors = −r r rΔ i i between the current density
point and the ith neighboring atom out of the total L neighboring atoms.

rΔ i can be used to describe a linear combination of neighboring con-
tributions to calculate the predicted density as:
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,
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where gi j, is symmetric with respect to permutation of i and j. Note that
“n-body” here refers to −n 1 atoms and a single density point.

A first approximation with rη ( )pred that is also invariant to rotation
of the reference frame is to consider only isotropic or 2-body con-
tributions from neighboring atoms using the magnitude of the dis-
placement =r rΔ . To introduce rotationally invariant 3-body con-
tributions, a map � �↦r r(Δ ,Δ ):i j

6 3 is adopted, where

=r r r r θ(Δ ,Δ ) ( , , )i j i j ij and = − ( )θ cos r r
ij r r

1 ·
·

i j

i j
. With this we formulate rη ( )pred

with −η r( )i i
2 body and −η r r θ( , , )i j i j ij,

3 body as:
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With a small modification for small distances where ≈r 0i , the
−ρ2 body part is exactly the approximation made with the embedding

density in the EAM. Adopting a cosine basis for −η r( )i i
2 body we have:
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where Meli is the number of basis functions for element el corresponding
to the ith neighbor, w kel ,i is the weight for that kth basis function and rc
is the 2-body cutoff distance. −ρ2 body can be re-written grouping con-
tributions by atom elements, denoting the neighboring atoms for ele-
ment “el” as “ neigh(el) ”. Re-arranging Eq. (4) we find:
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which, with = xϕΦ ( )nk k n for xϕ ( )k el leads to recovering the form of the
linear models with = …w w w[ , , ]Mel el,0 el, el

∑=−

∈

ϕ x wρ ( )·
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Stacking all elements and basis function types together we recover
the original linear model. The 3-body part −ρ3 body can be re-written in
an analogous way grouping by atom element pairs instead resulting in:
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with = − ( )θ cos r r
ij r r

1 ·i j

i j
. To denote the smoothness of functions in their

zeroth and first derivative towards cutoff points c, ⩾ =y x c( ) 0(0) and
⩾ =y x c( ) 0(1) , we will use the notation ⩾ =y x c( ) 0k( ) if the function

and its derivatives up to k are zero for ≥x 0. To ensure smoothness of
functions in their zeroth and first derivative towards the cutoff point we
multiply with =∼

+

∼
∼ψ x( ) x
x1

4
4 , where =∼ −x x c

0.1 , with =c rc (the distance
cutoff) and =x r .
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