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a b s t r a c t

We use simulation data from a high fidelity Finite-Discrete Element Model to build an efficient Machine
Learning (ML) approach to predict fracture growth and coalescence. Our goal is for the ML approach to be
used as an emulator in place of the computationally intensive high fidelity models in an uncertainty
quantification framework where thousands of forward runs are required. The failure of materials with
various fracture configurations (size, orientation and the number of initial cracks) are explored and used
as data to train our ML model. This novel approach has shown promise in predicting spatial (path to fail-
ure) and temporal (time to failure) aspects of brittle material failure. Predictions of where dominant frac-
ture paths formed within a material were �85% accurate and the time of material failure deviated from
the actual failure time by an average of �16%. Additionally, the ML model achieves a reduction in com-
putational cost by multiple orders of magnitude.

Published by Elsevier B.V.

1. Introduction

Failure in brittle materials occurs through the propagation of
fractures and has been investigated for over a century due to its
many applications in industry (aviation systems [1], subsurface
fracturing [2], etc.) and inherent scientific curiosity [3–5]. Brittle
materials are materials in which cracks of atomic sharpness essen-
tially propagate by bond ruptures [6]. Unlike ductile failure behav-
ior, brittle solids fail with little warning along grain boundaries [3]
or in the case of geomaterials, fractures propagate along intersti-
tials [7]. Once fracturing has begun, the fractures will have a strong
tendency to propagate since they are driven by internally stored
elastic energy. Accurately predicting failure at the macroscale
requires knowledge of the dynamically evolving microstructure,
including features such as grain boundaries and interstitials, and
also accounting for fracture interactions with the microstructure
and other fractures present in the system. Many approaches have
been taken to address the failure of a material at different length
scales including analytical and numerical methods [8–13,4].
Modeling micro- and meso-scale fracture mechanics is computa-
tionally expensive and hence, cannot be directly applied to large
components or systems crucial for many applications. Rather, the
physics on these scales must be averaged or scaled-up and incor-

porated into continuum models used at the macroscale. Again,
on the continuum scale, it becomes a computational burden to
account for the complexities of fracture networks, including all
possible fracture orientations and lengths, so significant sub-scale
information is often lost when moving upwards in length scales.

In this manuscript we take advantage of recent advances in
machine learning to develop a computationally efficient, reduced
order model of a high fidelity model that accounts for the evolution
of discrete fractures. The high fidelity model includes the majority
of the physics necessary to predict failure, but is computationally
prohibitive and too data intensive to be effective at the macroscale
(e.g. several meters and greater). We demonstrate that our reduced
order model mimics the high fidelity model for a given set of initial
and boundary conditions at 2–4 orders of magnitude speed up. The
eventual goal is to use the workflow demonstrated in this manu-
script to incorporate sub-scale information using our efficient
machine learning emulators into macroscale continuum constitu-
tive models for more accurate failure predictions.

2. Background

A common approach for macroscale continuum failure models
is to utilize average mesoscale quantities informed from higher
fidelity modeling approaches where discrete fracture evolution
can be captured, including mechanisms such as, velocities of tip
growth, process zone stress states, and/or coalescence. The lower
length scale models are used to derive upscaled relationships and
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determine quantities such as effective moduli to be used in the
continuum scale model [14–17].

Analytical models for fracture propagation have also been valu-
able for modeling and understanding fracture growth since they
are computationally inexpensive and are connected to physical
insight. In general, analytical approaches, including that of Griffith
[9,10] and Paris [11], must make broad assumptions in order to
remain tractable. Hence, they neglect complexities such as frac-
tures coalescence, variable orientation, and fracture nucleation
and focus on understanding how pre-existing fractures grow due
to the stress state present, and contain no interaction terms with
other fractures. These assumptions can have a large impact on
results since many materials, without a dominant fracture in the
macroscale, have been shown experimentally and numerically to
interact extensively before failure is reached. High fidelity numer-
ical models provide an alternative to these analytical models
allowing for the majority of physics to be considered but these
models are often computationally prohibitive at the macroscale.
Currently a popular approach for modeling fracture dynamics is
with the use of Finite Element Methods (FEM) [18] or Finite Dis-
crete Element Methods (FDEM) [19]. Advantageously, both meth-
ods can account for individual fractures, and interactions
between many fractures within a network. The key differences
between FEM and FDEM methodologies is in how the cracks prop-
agate, along edges with voids representing cracks (FDEM) or mov-
ing the crack boundaries through the mesh using cohesive
elements, mesh refinement, or other numerical methods (FEM).
The obstacle to properly modeling failure aspects at the macroscale
such as time to failure or damage evolution lies in finding the con-
nection between how lower scale phenomena affect the material
strength and damage. The geometry, orientation, and size of indi-
vidual fractures are a few of the many mesoscale features that
influence macro-scale behavior.

The high fidelity model we have chosen to model fracture prop-
agation to inform the ML approach is the Hybrid Optimization Soft-
ware Suite (HOSS), a FDEM analysis tool that can account for the
complexity of a fracture network’s growth over periods of time
[20]. This approach can result in billions of unknowns for a rela-
tively small system (106 fractures) resulting in a computationally
intractable problem at larger scales of interest to many applica-
tions. For example, running a 3D simulation of geomaterial on
the scale of 1 m� 1 m� 1 m with a fine enough mesh to resolve
individual fractures would require about 500,000 CPU hours. Thus,
bridging the gap between these two scales is a major obstacle.

In order to circumvent the cost of running high-fidelity models
like HOSS directly at the macroscale to model a large spatial and
temporal region, we have developed a machine learning (ML)
approach to learn and abstract the information that HOSS can pro-
vide, but at a much lower computational cost. Our long-term goal
is to use ML as the bridge that spans the gap between meso- and
macroscales for failure prediction. ML is a field that deals with
the design, development and implementation of techniques that
permit computers to learn based on data [21,22]. There have been
successful applications of ML across many fields like natural lan-
guage processing [23], object recognition [24], and bioinformatics
[25]. ML is classified into three categories based on the objective
of the technique; supervised ML, unsupervised ML and reinforce-
ment learning. Of these techniques, supervised ML has been
employed because of its focus on finding a mathematical function
that maps inputs to outputs. Examples of supervised ML tech-
niques include random forests (RF) [26], support vector machines
(SVM) [27] and artificial neural networks (ANNs) [28].

In the context of materials, ML has recently been used [29] to
tune mesh-based parameters in an FEM model such as element
stiffness, number of elements, etc. to match experimental data of

fracturing in a small steel frame. Using neural networks, they
achieved a 10% increase in accuracy in simulation output com-
pared to experimental results, but at the cost of substantial growth
in computational burden. Additionally for this approach to be suc-
cessful, a large amount of experimental data is required to ensure
over fit of the neural network doesn’t occur. Over fit is when the
ML model begins predicting noise or errors in the data, usually
due to the high number of trainable parameters compared to
observations available. In contrast to the above approach, we have
generated an MLmethod that is trained to learn the physics of frac-
ture propagation and interaction leading to coalescence and even-
tually, failure based on hundreds of HOSS simulation outputs. We
extract vital patterns and trends from the high-fidelity data to
build a predictive model that can emulate the HOSS simulations
in a fraction of the time.

The remainder of this article is organized as follows. We present
a brief description of the FDEM software HOSS in Section 3, and
outline our ML methodologies in Section 4. Section 5 contains
the Results and Discussions of the different ML methods compared
against HOSS and discuss our conclusions in Section 6.

3. FDEM model: HOSS

HOSS (Hybrid Optimization Software Suite) is a multi-physics
numerical tool based on the combined finite-discrete element
method (FDEM). The FDEM was proposed in the early 1990s as
an alternative to describe the transition from continuum to dis-
crete material behavior that occurs upon failure, i.e., fracture and
fragmentation processes of brittle geologic materials. One of the
key aspects of FDEM formulation is the minimization of the
assumptions made regarding the behavior of the material; fracture
and fragmentation processes are described explicitly based on con-
servation laws. In an FDEM framework the solid domains (called
discrete elements) are discretized into finite elements. Cracks must
be finely resolved spatially, with dozens to hundreds of finite ele-
ments along the length of each crack. The governing equation of
the FDEM systems are based on Newton’s laws [30] and are solved
by using an explicit (time marching) central difference method,
which makes it necessary to use very small timesteps to update
the system state dynamically. As a result, even simulations involv-
ing laboratory size samples with thousands of microcracks can
result in petabytes of data. Additionally, since the initial state of
defects and microcracks in the samples can never be known
exactly, predictive capability in an uncertainty quantification
framework requiring thousands of simulations is computationally
intractable. A full description of the method is outside the scope
of this paper; however, the interested reader can refer to the fol-
lowing comprehensive references for more details: [30–32].

4. Methods

In this section, we describe the ML approach to extracting,
learning and predicting material behavior. The data is extracted
from a set of 200, 2 dimensional HOSS simulations of a geomaterial
that is 2 meters by 3 meters. These geomaterials contain 20 ran-
domly distributed fractures that have a uniform length of 30 cm.
The lengths of initial fractures were constricted to uniform lengths
since larger lengths of initial fractures tend to dominate fracture
propagation and failure. Our interest was in fracture coalescence,
thus eliminating the dominance of longer fractures with uniform
lengths gave us a clearer view of this phenomena. These initial
fractures varied between three orientations, 0, 60 and 120 degrees
to the applied load on the material. The material is pulled from the
top at a constant velocity of 0.3 meters per second, the bottom
boundary is fixed. The simulation ended when a continuous frac-
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