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A B S T R A C T

We present the second set of benchmark problems for phase field models that are being jointly developed by the
Center for Hierarchical Materials Design (CHiMaD) and the National Institute of Standards and Technology
(NIST) along with input from other members in the phase field community. As the integrated computational
materials engineering (ICME) approach to materials design has gained traction, there is an increasing need for
quantitative phase field results. New algorithms and numerical implementations increase computational cap-
abilities, necessitating standard problems to evaluate their impact on simulated microstructure evolution as well
as their computational performance. We propose one benchmark problem for solidification and dendritic growth
in a single-component system, and one problem for linear elasticity via the shape evolution of an elastically
constrained precipitate. We demonstrate the utility and sensitivity of the benchmark problems by comparing the
results of (1) dendritic growth simulations performed with different time integrators and (2) elastically con-
strained precipitate simulations with different precipitate sizes, initial conditions, and elastic moduli. These
numerical benchmark problems will provide a consistent basis for evaluating different algorithms, both existing
and those to be developed in the future, for accuracy and computational efficiency when applied to simulate
physics often incorporated in phase field models.

1. Introduction

Over the past decade, the concept of integrated computational
materials engineering (ICME) has firmly taken root within the materials
science and engineering community. In the ICME approach, a material
is described and modeled at different fundamental length and time
scales; information is linked across these scales to fully capture material
behavior and to develop the processing-structure-properties relation-
ships used by materials engineers [1]. The ICME approach may be
applied to achieve different goals, such as the development of wholly
new materials for specific applications or the tuning of an existing
material’s composition to meet multiple, unrelated (e.g., color and
strength) design criteria. The ICME approach has engendered multiple
successes thus far, including the development of new alloys for aero-
space [2,3], automotive [4,5], and coinage [6] applications.

The phase field approach is one modeling technique that is com-
monly included in ICME frameworks. Phase field modeling is a con-
tinuum method that is applied to study phenomena occurring on dif-
fusive length and time scales (nanometers to micrometers and

microseconds or longer). In a phase field model, certain field variables
are defined (e.g., solute concentration) that are continuous across the
computational domain and that vary smoothly across phase interfaces.
A free energy of the system is defined based on these field variables, and
the evolution of the system is driven by a reduction of the free energy.
Unlike mean-field models, which average out spatial variations in mi-
crostructure, phase field models resolve microstructure evolution in
space, elucidating how variations within a microstructure form and
interact. Historically, phase field models have tended to be more qua-
litative in nature, providing insights into potential microstructure
evolution mechanisms. However, with the integration of realistic en-
ergetics (e.g., CALPHAD-based free energies [7]), phase field models
are now being crafted to quantitatively describe real materials. They
have been applied to study a range of phenomena, such as the “rhenium
effect” in nickel-based superalloys [8] and the formation of gas bubble
superlattices in uranium-molybdenum nuclear fuel [9]. For compre-
hensive descriptions and reviews of phase field modeling, see Refs.
[10–17].

Error and uncertainty in models and simulation results are
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important considerations when applying the ICME approach to mate-
rials design [18]. Error, broadly speaking, is the deviation in modeled
results from physical reality, while uncertainty is the likelihood of the
model and implementation to reproduce the physical phenomenon in
question with some variation in parameters. Some degree of error and
uncertainty exist within any model results, and the linked nature of
ICME frameworks means that error and uncertainty at one level may
propagate through the results at different length and time scales. While
error analyses for phase field models and algorithms are published on
occasion (e.g., Refs. [19–21]), the proliferation of scientific publica-
tions can make it difficult for new modelers to fully familiarize them-
selves with existing analyses on the subject, which are often a part of a
larger publication on a different topic. The development of new solver
frameworks combined with the growing popularity of the phase field
approach and a desire for “turnkey” simulation software means that a
common basis is needed for performing error analyses and uncertainty
quantification; new numerical methods must be evaluated for their
accuracy with respect to phase field model physics.

To help address these issues, the Center for Hierarchical Materials
Design (CHiMaD) and the National Institute of Standards and
Technology (NIST) are developing a suite of numerical benchmark
problems that will allow the uniform testing of phase field algorithms
and implementations. We choose problem formulations and benchmark
metrics that balance the need for nontrivial solutions with computa-
tional resource requirements and the investment of human effort, and
we intend that these problems are used by the community to under-
stand how numerical methods impact results by comparing different
results (see Ref. [22] for a detailed discussion). Importantly, the
benchmark problem effort includes significant community involvement
regarding problem proposal, design and vetting. These numerical
benchmark problems are a necessary precursor before validating a
model to experimental results, as the correctness of the numerical
method must be verified for validation studies to be useful. Each of
these benchmark problems targets a specific aspect of physics com-
monly found in phase field models. In particular, we address models
that include coupled physics, as these can pose significant numerical
challenges. The first set of problems focus on the diffusion of solute and
the growth of a second phase [22], while this set involves solidification
and dendritic growth as well as linear elasticity. To support community
involvement, we have developed a website (https://pages.nist.gov/
pfhub/), which serves as a repository for the problem statements and
the results from different numerical implementations.

We choose dendritic growth as a subject both because of the im-
portance of the physical phenomenon in controlling materials proper-
ties [23] and because of the sensitivity of simulation results on phase
field model formulations and implementations (see, for example, Refs.
[19,24]). Historically, dendritic growth is one of the first applications of
phase field modeling [25,26], and remains a significant area of research
today. Sharp interface limit [26–30] and thin interface limit [19,31–33]
analyses show that the diffuse-interface phase field formulation is
asymptotically equivalent to the sharp-interface Stefan formulation.
With the introduction of an “anti-trapping current” to correct for solute
trapping due to the jump in chemical potential at the solid/liquid in-
terface [33,34], quantitative phase field modeling of alloy solidification
can be performed using unphysically large diffuse interface widths.
Today, massive increases in computing power and the advent of sci-
entific computing on graphical processing units (GPUs) enable large-
scale, quantitative 3D phase field simulations (see, for example, Refs.
[35,36] and reviews [37,38]).

Similar considerations drive our choice for the selection of linear
elasticity as the subject of the second benchmark problem. Like den-
drites, precipitates are a key microstructural feature impacting the
strength of alloys [39], and they are often elastically stressed, which
affects their shape and their microstructure evolution during service.
Elasticity has long been incorporated into phase field models: indeed,
Cahn’s seminal paper on spinodal decomposition [40] incorporates

elastic strains due to composition fluctuations. Eshelby presents an
analytical solution for the elastic field of a single coherent, elastically
stressed precipitate in an infinite matrix [41], but the generalized
problem of multiple interacting precipitates in a matrix with arbitrary
crystal structure, lattice parameter misfit and elastic stiffnesses can only
be solved numerically. Sharp-interface approaches provide insight into
equilibrium elastic shapes and coarsening under the influence of elastic
stress [42–46], but these approaches have difficulty simulating pre-
cipitate splitting or merging. Early phase field formulations studying
elastically stressed precipitates demonstrate the power of the method
(e.g., Refs. [47–49]), and present-day studies have expanded to 3D si-
mulations (e.g., Refs. [50–53]) and formulations that include plasticity
(e.g., Refs. [54–56]).

In this work, we present the second set of community-driven
benchmark problems developed by CHiMaD and NIST. One problem
targets solidification by modeling dendritic growth for a single-com-
ponent system, and the other targets linear elasticity by simulating the
equilibrium shape of an elastically stressed precipitate. We discuss the
importance of these problems for evaluating new numerical algorithms,
a growing concern given the rise of generalized numerical solver fra-
meworks that may include new algorithms that may not be suitable for
phase field model physics. We demonstrate the utility of the dendritic
growth problem by performing the same simulations with different time
integration algorithms. In addition, we discuss how the problems may
be modified to test small variations in model formulation or para-
meterization, and show how the shape of an elastically constrained
precipitate is affected by these variations. Finally, we urge researchers
to provide feedback on the existing benchmark problem set, contribute
their results to the website, and make suggestions for modifications or
future benchmark problem topics.

2. Benchmark problem formulations

The phase field approach is well suited for modeling multiphysics
problems, that is, phenomena driven by more than one physical factor,
e.g., diffusion in an electric potential field. In a phase field model, a
microstructure is defined by one or more field variables, or “order
parameters,” which exist over the entire computational domain and
which evolve in time. Multiphysics models may define additional field
variables, such as temperature, that are needed to describe the system
but not the microstructure itself. The total system free energy, F , is a
functional of different local free energy density contributions that de-
pend on the field variables. These different free energy densities capture
different energetic contributions to the system, such as bulk chemical
energy, interfacial energy and elastic energy. The time evolution of the
order parameters is governed by functional derivatives of the free en-
ergy as driving forces (Onsager non-equilibrium thermodynamics),
though additional field variables may be driven by different dynamics
(e.g., thermal diffusion). If the relaxation dynamics of one field variable
is orders of magnitude faster than another, the model may be for-
mulated using a quasi-static approximation, that is the time-in-
dependent solution for the rapidly-evolving variable is computed at
each time step of the slower-changing variable’s evolution.

The two benchmark problem formulations presented in Section 2
involve multiphysics coupling: the model for solidification and den-
dritic growth incorporates anisotropic interfacial energy and the release
of latent heat, and the model for the elastically constrained precipitate
adds the physics of linear elastic solid mechanics to the Cahn-Hilliard
equation. We discuss each model formulation and parameterization, as
well as our choices for computational domain sizes and initial and
boundary conditions. Both models are restricted to two dimensions to
capture essential physics and potential computational pitfalls without
requiring the use of significant computational resources.
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