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A B S T R A C T

In metallic alloys of fission or fusion reactors, microstructural evolution results from a dynamic equilibrium
between thermodynamic forces and the production of defects by irradiation. The migration of defects can lead to
the formation of clusters of defects (nano-cavities, dislocation loops, nano-precipitates) or variations in chemical
composition close to the defect sinks, a phenomenon known as Radiation Induced Segregation (RIS). To predict
the effect of irradiation conditions (type of irradiation particle, dose rate, temperature), phenomenological
diffusion models exist that have to be assembled to give an overall description. Our objective is to describe these
models and to propose numerical implementations to solve them starting at the atomic scale (DFT energy cal-
culations, Kinetic Monte Carlo, Self-Consistent Mean Field approaches) to reach the mesoscopic one using the
phase field modeling. This multi-scale approach is illustrated by a short review of recent studies focusing on
dilute and concentrated iron based alloys.

1. Introduction

Radiation induced segregation (RIS) is a non-equilibrium segrega-
tion process that was first predicted by Anthony [1] in the late 60s. The
irradiation of metallic materials produces vacancies and self-interstitial
atoms (SIAs) by elastic collisions between the incoming particles and
the atoms of the target. These point defects (PDs) subsequently migrate
by thermally activated jumps and may annihilate by mutual re-
combination, cluster or eliminate at point defect sinks such as dis-
locations, grain boundaries, free surfaces, etc. The balance between the
creation and elimination mechanisms may result in PD concentrations
far above the equilibrium values, and to net fluxes of PD toward sinks.

In pure metals, the evolution of the spatial average PD atomic
fractions can be analyzed by means of homogeneous rate equations
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where K0 is the rate of creation (in dpa s−1), = +R πr D D V4 ( )/c I V at the
rate of recombination (with rc the distance of recombination, DI and DV
the PD diffusion coefficients and Vat the atomic volume). XV

s and XI
s are

the PD atomic fractions at sinks, where they are considered to be sus-
tained at their equilibrium values (XV

eq and XI
eq), or when appropriate

put equal to zero. ksV
2 and ksI

2 are the sink strengths of the various sinks

s. Analytical expressions of the sink strengths for dislocations, thin
films, etc., have been obtained by solving diffusion equations [2] as-
suming simplifying boundary conditions. Note that a good estimation of
the sink strength is especially crucial for the modeling of void swelling,
which is related to the dislocation bias
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mostly sensitive to the elastic interactions between dislocations and
point defects.

In alloys, fluxes of PD give rise to fluxes of the chemical elements,
leading to RIS: a local modification of the alloy composition near sinks.
In an A-B alloy, the evolution of the position-dependent solute and PD
atomic fractions are given by the following diffusion equations [3]
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The first two equations correspond to Eqs. (1) where the divergence
of fluxes and the spatial variation of the atomic fractions are neglected.
KV

abs and KI
abs are the local PD absorption rates, as explained in Section

4.2.
According to the thermodynamics of irreversible processes, the
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fluxes of PD and solute are given by:
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where ∇μβ is the gradient of chemical potential of species β, kB the
Boltzmann constant, T the temperature and Lαβ the Onsager or phe-
nomenological coefficients. The same fluxes can be given in terms of
partial diffusion coefficients and gradients of concentration. However,
Eq. (4) highlights the actual driving forces ∇μβ and the Onsager coef-
ficients, which give a direct indication of the sign of flux couplings: e.g.
the fluxes of B and V are in opposite direction if LBV is negative and in
the same direction otherwise. Wiedersich et al. have shown [4] that in
the steady state, in the vicinity of a point defect sink, the gradients of B
and V are related by:

⎜ ⎟∇ = −
+

⎛
⎝

− ⎞
⎠

∇ = ∇X L L
L D L D

L
L

L
L

X
X

α X
X

,B
AV AI

AI B BI A

BV

AV

BI

AI

V

V

V

V (5)

where DA and DB are the intrinsic diffusion coefficients of A and B
(which are a combination of Onsager coefficients and first derivatives of
chemical potentials, with respect to PD and atomic fractions). One
observes a depletion of solute near the sink when ∇ ∇ >X X/ 0B V , an
enrichment otherwise. It is clear that a predictive modeling of RIS re-
quires a reliable description of both the chemical potentials and the
Onsager coefficients. The later are very difficult to measure experi-
mentally (especially those of self-interstitials), but recent progress in
first-principles methods makes them relatively easy to compute from
the migration barriers and jump frequencies of PD in pure metals and
alloys.

Several strategies are possible to predict RIS. The first one is to
develop diffusion and random-walk models to make the link between
the jump frequencies and the Onsager coefficients. The task is far from
trivial, due to the correlations between successive PD jumps.
Nevertheless, recent progress has been made, especially in dilute alloys,
thanks to the development of new mean-field models. For example,
systematic estimations of Onsager coefficients in Fe-X alloys are now
available and are presented in Section 2. Such analytical approaches are
important to analyze the detailed mechanisms of coupling that control
the RIS. Alternatively, atomistic kinetic Monte Carlo (AKMC) methods
can be used with the same PD diffusion model, to measure the same
transport coefficients but also to simulate the evolution of concentra-
tion profiles. AKMC simulations are especially useful for concentrated
alloys, where the analytical expressions of Onsager coefficients are still
based on more stringent approximations, and to simulate the evolution
of concentration profiles near PD sinks with various geometries and
densities. Another advantage of Monte Carlo methods is that they are
also suited to the modeling of nucleation phenomena, and are therefore
useful to study radiation induced precipitation. AKMC methods are
presented in Section 3. They are nevertheless very time consuming and
limited to small systems. Phase Field models are more appropriate to
deal with large systems – but require a careful parametrization on
AKMC results. Moreover, Phase Field models can include elastic inter-
actions and provide precise calculations of sink strengths. They are
presented in Section 4. To illustrate the combination of these different
approaches, we will focus on the case of Fe-based binary alloys, and
mainly on Fe-Cr alloys which are of great technological importance as a
model for ferritic steels, and have been systematically studied in re-
ferences [5–9].

2. Jump frequencies and transport coefficients

The jump frequency of a point defect in a given atomic environment
can be computed in the framework or the transition state theory, using
ab initio calculations. In dilute alloys, only a few environments have to
be considered and all the relevant jump frequencies can be estimated by
this method. In concentrated alloys there are many more possible

configurations and simplified models must be used. RIS trends can then
be predicted by estimating the transport coefficients Lαβ and DA B, of eq.
(5), using analytical diffusion models or AKMC simulations.

2.1. Atomic jump frequencies

Vineyard’s harmonic transition state equation [10], gives the ex-
change frequency between, for example, a vacancy and a neighboring
atom A:
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where HΔ AV is the migration enthalpy at constant pressure (or energy at
constant volume), SΔ AV the migration entropy and νAV the attempt
frequency. HΔ AV corresponds to the increase of the total enthalpy when
atom A goes from its initial site on the crystal lattice (Hi) to the saddle
point between its initial and final position (HSP). Both the migration
enthalpy and the prefactor ν S kexp(Δ / )AV AV B depend on the local atomic
configuration surrounding the PD. A similar expression holds for self-
interstitials, which may adopt several configurations and migration
mechanisms. DFT studies on self-interstitial properties – for which few
experimental data are available – are of particular interest. The most
probable configuration is predicted to be the [1 1 0] dumbbell in bcc
iron and the [1 0 0] dumbbell in most fcc alloys [11,12].

The migration enthalpies are usually computed at 0 K by means of
the drag or the nudged elastic band methods [13]. The vibrational
formation and migration entropies are computed by means of a phonon
calculation combined to a harmonic (or quasi-harmonic) approximation
[10]. Another approximation is to consider only the phonon modes
associated with the displacements of the hopping atom [14–16].
Knowledge of finite temperature effects is still incomplete: direct cal-
culations of free energies beyond the harmonic approximation are
scarce and applied to defect-free systems only [17], and the modeling of
magnetic transitions and their effect on jump frequencies is mostly
phenomenological [9,15,18–20].

In the dilute limit, a local environment is uniquely defined by the
distance between the PD and the single solute atom, while in con-
centrated alloys the number of local configurations to be considered
may become very large. DFT methods are still too time consuming to
allow a full estimation of the migration barriers for all the possible
configurations in concentrated alloys. The migration barriers HΔ AV can
be computed using various “broken-bond” models, where the enthalpy
of atomic distributions on a perfect lattice are written as a sum of ef-
fective interactions. The results presented in Sections 3 and 4 are based
on this approach. The simplest models use constant pair interactions
but a realistic description of the energetic landscape often requires
N -body interactions deduced from a cluster expansion of ab initio
formation energies [21], or concentration dependent interactions [6,9].
Some models assume a linear dependence between the saddle-point
enthalpy (HSP) and the enthalpies of the system after (Hf ) and before
(Hi) the jump: = + +H H H Q( )/2SP f i (which comes down to choosing
an average migration barrier, Q). Others explicitly introduce effective
interactions at the saddle-point [3]. The entropic contributions SΔ AV
and the effect of magnetic transition can be taken into account by the
temperature dependence of the effective interactions [9]. Parameters of
these models are fitted to experimental thermodynamic and diffusion
data and/or DFT ordering energies and migration barriers. The use of
experimental data is precious when finite temperature effects – such as
the entropy contributions and the temperature-dependent magnetic
interactions – have to be taken into account.

Alternatively, the jump frequencies can be measured by molecular
dynamics (MD) [22–24], which naturally take into account finite
temperature effects. However the method is limited to high tempera-
tures and small migration barriers (i.e. interstitial diffusion). Moreover
MD simulations usually use semi-empirical potentials and developing
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