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a b s t r a c t

The formation and lifetime of point defects is governed by an interplay of kinetics and thermodynamic
stability. To evaluate the stability under process conditions, empirical potentials and ab initio calculations
at T ¼ 0 K are often not sufficient. Therefore, various concepts to determine the full temperature depen-
dence of the free energy of point defects with ab initio accuracy are reviewed. Examples for the impor-
tance of accurately describing defect properties include the stabilization of vacancies by impurities
and the non-Arrhenius behaviour of vacancy formation energies due to anharmonic lattice vibrations.

� 2018 Elsevier B.V. All rights reserved.

1. Introduction

Defects have been in the focus of experimental and theoretical
research for decades due to their decisive role for materials prop-
erties. A comprehensive knowledge of defects’ behavior is of par-
ticular importance for controlling radiation effects and improving
the performance of materials under irradiation, which depends
strongly on the evolution of radiation-induced defects [1]. Atoms
are displaced by collision cascades, whereby the first ‘‘ballistic
stage” produces within a few picoseconds a significant number of
point defects, mainly Frenkel pairs. These defects evolve during
the subsequent long-term ‘‘recovery stage” through thermally-
activated, diffusion-controlled processes, including migration and
recombination, elimination or annihilation, critically influencing
the performance and lifetime of irradiated materials.

To understand defect evolution and reveal the relevant mecha-
nisms, calculations and simulations have become a common sup-
plement to experiment. The primary damage production process
is typically addressed by molecular dynamics (MD) simulations
[2–5], while the recovery stage generally requires simulations
going beyond the time scale accessible with MD. To go to large
time scales, rate theory [6], kinetic Monte Carlo [7,8], or cluster
dynamics [9] are used. Applying these computational tools has
enabled the determination of critical guidelines in designing new
and better radiation tolerant materials. The predictive power of
the simulations is closely linked to the performance of the avail-
able interatomic potentials which need to reproduce the funda-
mental quantum mechanical interactions. The development of

reliable potentials faces specific challenges for radiation damage
simulations as an accurate prediction of defect properties, e.g., for-
mation/migration energies or defect-atom bonding energies,
requires special care [7].

Due to their approximate nature, semi-empirical interatomic
potentials may suffer from providing quantitatively (sometimes
even qualitatively) inaccurate defect properties. Therefore, new
and advanced parametrizations of interatomic potentials are desir-
able. However, due to the rather limited number of experimental
data on point defect properties, such potentials rely strongly on
ab initio derived input [7,10–16], usually computed by density
functional theory (DFT). Extensive developments of DFT-based
techniques—several of which will be in the focus of the present
review—have lead to a wide variety of successful applications pro-
viding highly-accurate defect formation energies often in excep-
tional agreement with experimental data [17–22].

Among the various types of defects, point defects (e.g., vacan-
cies or interstitials) are of primary concern in defect evolution
[16]. Although the number of point defects produced in the initial
ballistic stage is far above the equilibrium concentration, a
prerequisite for correctly predicting their evolution is an accurate
understanding and description of the intrinsic thermodynamic
properties. Modern DFT based techniques can provide in this
respect highly accurate input for benchmarking empirical poten-
tials. The thermodynamics of defects becomes also important to
understand driving forces behind defect aggregation during the
long-term recovery stage.

In the present review we focus on the methodology to
accurately determine DFT-based point defect thermodynamics.
An essential characteristic of point defects, i.e., 0D defects, is their
substantial configurational entropy. This is in obvious contrast to
higher dimensional defects such as dislocations (1D) and interfaces
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(2D). Beyond the fundamental interplay between formation energy
and configurational entropy that determines the ’usual’ equilib-
rium concentration, a topic of relevance for the recovery stage is
the stabilization of point defects, in particular vacancies, by form-
ing complexes/ associates with extrinsic point defects such as
hydrogen. These issues will be addressed in Section 2. In Section 3,
we formulate and describe techniques to assess entropy contribu-
tions beyond the configurational one. A main focus will be on the
anharmonic contribution, i.e., phonon-phonon interactions. This
contribution requires advanced computational techniques to be
accurately captured. As exemplified in Section 4, anharmonic con-
tributions are critical to properly describe the temperature depen-
dent Gibbs energy of vacancy formation and to link experimental
data taken at high temperatures with theoretical data commonly
computed at T ¼ 0 K.

At present a similarly well-developed methodology to address
finite temperature contributions to point defect kinetics, i.e., migra-
tion free energy barriers, is not available. In Section 5 we sketch the
basics of calculating defect barriers with ab initio and give a short
outlook on possible extensions.

2. Configurational thermodynamics of defects

2.1. Defect formation energy

To arrive at an expression for the defect formation energy, we
start with the fundamental equation for the change of the system’s
energy, dE, according to the first law of thermodynamics:

dE ¼
X
k

Yk dXk

¼ T dS� PdV þ
X
i

lidNi þ
X
d

Ed
f dN

d þ � � � : ð1Þ

Here, Yk represents a generic intensive, i.e., system size indepen-
dent, variable and Xk the corresponding conjugate extensive vari-
able, being proportional to the system size. The sum over k runs
over all conjugate variable pairs available to the system such as:

� temperature T and entropy S,
� pressure P and volume V,
� chemical potential li and number of atoms Ni of species i,

� defect formation energy Ed
f and number of such defects Nd.

The dots in Eq. (1) indicate the possibility of adding further con-
jugate pairs. It follows that the defect formation energy can be
computed as

Ed
f ¼

@E

@Nd

����
S;V ;Ni ;...

; ð2Þ

where all extensive variables except for Nd, i.e., the ‘‘invariants”, are
held fixed. In a typical DFT supercell approach, the derivative in Eq.
(2) is replaced with a finite difference:

Ed
f ¼ Escþdðfni þ DnigÞ � EscðfnigÞ �

X
i

Dnili; ð3Þ

where Escþd and Esc are the total energies of a supercell with and
without the considered defect, Dni refers to the number of atoms
of type i that have been added to (Dni > 0) or removed from
(Dni < 0) the supercell to form the defect and li is the correspond-
ing chemical potential. To determine the required size of the super-
cell convergence tests are required [15,23]. Particular care has to be
taken for magnetic materials, since magneto-elastic coupling effects
yield long-range interactions [15]. Modifications of magnetic
moments around a point defect (vacancy, interstitial) extend over

manymore shells than the relaxation effects in non-magnetic mate-
rials [24]. It is also important to note that the magnetic configura-
tion as well as the magnetic order have a strong impact on the
defect formation energy [25–27].

2.2. Configurational entropy and defect concentration

In thermodynamic equilibrium, defects with a positive

formation energy Ed
f are stabilized by their configurational entropy

Sconf ¼ kB lnW (kB =Boltzmann constant), where the number of
microstates W for n point defects on N lattice sites is given by

W ¼ ðgNÞ!
ðgN � nÞ!n! � ðgNÞn=n!: ð4Þ

Here, g is a geometry factor, which is e.g., g ¼ 1 for monovacancies
and g ¼ 6 for divacancies in fcc lattices. The approximation in Eq.
(4) applies for small defect concentrations cd ¼ n=N and the result-
ing configurational contribution of the defects to the free energy of
the system reads

Fconfðcd; TÞ ¼ cdEd
f � kBT½cd � cd lnðcdÞ þ cd lnðgÞ�; ð5Þ

where the Stirling approximation has been applied. The corre-
sponding defect concentration at thermodynamic equilibrium

(@Fconf=@cd � 0) is given by

cdeqðTÞ ¼ g exp � Ed
f

kBT

 !
: ð6Þ

For larger defect concentrations the approximation in Eq. (4)
may be less appropriate. Assuming non-interacting point defects,
it is possible to derive an expression that takes into account the
reduced number of defect free sites. For g = 1 the configurational
free energy then reads

Fconfðcd; TÞ ¼ cdEd
f þ kBT½cd lnðcdÞ þ ð1� cdÞ lnð1� cdÞ�; ð7Þ

and the concentration

cdeqðTÞ ¼ exp
Ed
f

kBT

 !
þ 1

" #�1

; ð8Þ

which follows a Fermi-Dirac distribution that reduces in the dilute
limit to the Boltzmann distribution in Eq. (6). Note that large defect
concentrations also modify the chemical potentials li of the species
forming the material [28], which needs to be self-consistently taken
into account in Eq. (3).

2.3. Stabilization of vacancies by other defects

In contrast to the situation in structurally perfect, unary bulk
materials, the defect concentration in real materials is inhomoge-
neous and depends on the local environment. This applies in par-
ticular to the situation in radiation damage, where multiple point
defects such as vacancies, self-interstitials and impurity intersti-
tials are expected to occur simultaneously. Whenever their interac-
tion has a positive energy (i.e., is attractive), they stabilize each
other and may form defect complexes [15,29,30].

An important phenomenon related to this interplay is the so-
called superabundant vacancy formation [31], which is observed
in various metallic materials and steels. A particularly omnipresent
element is hydrogen. Consequently, the role of interstitial H atoms
on the formation and concentration of intrinsic defects such as
vacancies has been the subject of intensive experimental [32,33]
and theoretical [24,34] investigations.

Using the example of hydrogen-vacancy complexes, we discuss
in the following the formalism to treat complexes consisting of two
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