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a b s t r a c t

Local lattice instability analysis based on the atomic elastic stiffness (AES), Baij ¼ Dra
i =Dej (i; j ¼ 1—6 in

Voigt notation), is applied to mode I crack tip in covalent binary crystal b-SiC of Tersoff interatomic
potential. The application limit of the AES is disclosed at the discontinuous local energy surface of disor-
dered broken bonds in the discrete binary system; however, we also captured interesting results with the
1st eigenvalue gað1Þ of Baij as follows, (1) the atomic stress of C atoms coincides with the stress singularity
in the linear fracture mechanics, when the minimum eigenvalue of C atom shows the first sudden drop or
the first instability, (2) but the crack doesn’t propagate nor there is no remarkable change in the
stress–strain curve, (3) bond breaking and reconstruction occurs in the vicinity of crack tip at the second
instability in the eigenvalue, (4) C atoms in the disordered configuration show extraordinary large
negative eigenvalue (possibly due to discontinuity of energy surface), while Si atoms show third drop
in the eigenvalue just before unstable crack propagation, (5) linear fracture mechanics fails to predict
the stress singularity at the crack propagation, (6) the principal axes of the eigenvector of gað1Þ < 0 atoms
reveal the deformation mode for local slip and cracking on the multiple (111) planes in the unstable
domain at the forefront of the propagating crack.

� 2018 Elsevier B.V. All rights reserved.

1. Introduction

Wang et al. [1,2] proposed the stability criteria (B-criteria) for
crystal under finite strain and temperature, based on the elastic
stiffness coefficients which relate the stress and strain in the non-
linear elasticity [3]. Ignoring subtle asymmetry in the original form
of elastic stiffness coefficients, the 4th order tensor Bijkl � Drij=Dekl
(i � l ¼ 1;2;3 or x; y; z in the Cartesian coordinate) could be rewrit-
ten as 6� 6 matrix Bij ¼ Dri=Dej in the Voigt notation [3], i; j ¼ 1—6
or xx; yy; zz; yz; zx; xy. Wang discussed the stability limit with the
principal minor determinant of the matrix Bij to check the positive
definiteness of the stress–strain relation. It is much easier to under-
stand the criteria by using the eigenvalue of the solution of
eigenequation, BijDej ¼ gDei. The negative eigenvalue implies the
existence of the unstable deformation path with the straightfor-
ward interpretation of Dri ¼ BijDej ¼ gDei, and corresponding
eigenvector {Dei} gives the deformation path in the 6-dimensional
strain space.

Although the B-criteria is defined for the whole system or crys-
tal, we have applied this concept to evaluate the local stability by

defining atomic elastic stiffness (AES) Baij at each atom [4–8]. Here,
the Bij can be evaluated with the elastic coefficients Cij and stress ri

at current state {x} such as B11 ¼ C11 þ r1;B12 ¼ C12 � ðr1 þ r2Þ=2
and B44 ¼ C44 þ ðr2 þ r3Þ=2. The ri and Cij are defined as the first
and second order derivatives of the internal energy per unit
volume, EðxÞ, against strain [3]. Atomic simulations based on the
central force approximation assume the potential function for
atom–atom interaction, and the system energy Etot is given by
the sum of the each atom contribution, Ea. Thus we can easily
derive the mathematical form for ra

i ¼ ð@Ea=@eiÞ=X and

Ca
ij ¼ ð@2Ea=@ei@ejÞ=X (X; atomic volume) for potential function

adopted, and evaluate the Baij only with the current configuration
as same as force calculation. In the latest report on mode I crack
in hcp-Mg [8], we visualized the unstable deformation mode with
the principal axis of the strain tensor [Deij] of which components
are those of the eigenvector {Dei} for the unstable atoms with large
negative 1st eigenvalue gað1Þ.

The present study is the first report on the application of our
AES analysis to mode I crack in the binary covalent crystal b-SiC.
On the cleavage cracking in small b-SiC system, Tang and Yip [9]
performed B-criteria analysis on the perfect b-SiC periodic cell with
216 atoms under hydrostatic tension, just after Wang’s paper since
they are the member of same research group. They demonstrate

https://doi.org/10.1016/j.commatsci.2018.01.047
0927-0256/� 2018 Elsevier B.V. All rights reserved.

E-mail address: kisaragi@gifu-u.ac.jp.
URL: http://www.eng.gifu-u.ac.jp/kikai/e/staff/yashiro.html.

Computational Materials Science 147 (2018) 72–80

Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier .com/locate /commatsci

http://crossmark.crossref.org/dialog/?doi=10.1016/j.commatsci.2018.01.047&domain=pdf
https://doi.org/10.1016/j.commatsci.2018.01.047
mailto:kisaragi@gifu-u.ac.jp
http://www.eng.gifu-u.ac.jp/kikai/e/staff/yashiro.html
https://doi.org/10.1016/j.commatsci.2018.01.047
http://www.sciencedirect.com/science/journal/09270256
http://www.elsevier.com/locate/commatsci


the validity of the B-criteria and report the cleavage cracking in the
shuffle-set (111) plane. Then the research group shifted stability
analysis from elastic stiffness to dynamical matrix of the lattice
dynamics or phonon soft mode analysis and insist on that they
captured the initiation of cleavage cracking in the same 216 atoms
of SiC by using local participation fraction (LPF) [10]. Furthermore
they proposed the following K-criteria by considering the displace-
ment of uðxÞ ¼ w expðik � xÞ excited by long elastic wave in homo-
geneous crystal [11],

Kðw;kÞ � ðCijklwiwk þ rjljwj2Þkjkl > 0: ð1Þ
They also define the Kmin at each atom position as ‘‘micro-

stiffness” and report they can capture the defect nucleation under
indentation at the site where Kmin vanishes [12]. It is of interest
they start the discussion from phonon mode analysis for system
but the final form quite resembles to our scheme based on the local
stress and elastic coefficient. Their discussion for phonon mode
analysis still continues for monatomic less-inhomogeneous system
[13], however, their formulation is quite complicated even for sim-
ple EAM potential and it is unclear the applicability to mixed atom
species and crack problem which might have reflection of elastic
wave. As another approach to local instability, Kitamura, Umeno
and Shimada propose the direct calculation of system Hessian
[14–16]; that is, they evaluate near 3N � 3N Hessian matrix for
whole system with N atoms and find negative eigenvalue and cor-
responding 3N-dimensional eigenvector {Dxai } as directions of
motion of all atoms in the unstable deformation mode. However,
the enormous matrix calculation restricts their application to small
system of few thousand atoms. Contrary to these strict analysis,
our scheme requires the eigenvalue calculation only for 6� 6
matrix of all N atoms, and the computational cost for Baij calculation
is almost similar to the force calculation in molecular dynamics
(MD) simulation.

Referring to crack simulations of b-SiC, Kikuchi et al. [17] per-
formed MD simulations on the (110), (111) and (100) crack and
reported the orientation dependence and discussion with the
energy release rate. Yang et al. [18] studied crack propagation
behavior at Cu/SiC interface for the strength of the ceramics rein-
forced metal matrix nanocomposite (MMNC) and discussed with
Rice–Thomson model [19]. On the other hand, some DFT calcula-
tions report the significant difference between DFT and empirical
potentials for the crack tip problem [20,21]. That is, MD simula-
tions based on the interatomic potential function have more or less
deviations from real material. However, as insisted on in our previ-
ous report [7], our main purpose is not to discuss the crack propa-
gation of the real b-SiC but to seek the physical meaning of our AES.
Today many researchers can easily use the open MD code such as
LAMMPS [22], however, there is no research to spotlight the sec-
ond order derivatives of the potential function adopted. Even
though the adopted empirical potential is not correct as real b-
SiC, the obtained results for model material would give new insight
that nobody studies.

In the present study, the (010) and (111) through cracks are
subjected to mode I loading by MD simulation, and the propaga-
tion behaviors are discussed with the eigenvalue and eigenvector
of Baij . Different from our previous studies for monatomic systems,
the application limit is also disclosed for C atoms at disordered
broken bonds in the dynamic crack propagation.

2. Atomic stress and elastic constants

The interatomic potential adopted is the modified Tersoff
potential for Si and C [23]. In the Tersoff potential, the energy con-
tribution of atom a; Ea, and atomic stress ra

ij and elastic coefficients

Ca
ijkl are defined as follows;

Ea ¼ 1
2

X
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where X is atomic volume, Greek superscripts a;b identify atoms
while subscript i; j the Cartesian free index x; y and z. The 0 and 00

indicates the first and second derivatives of the function f R and f A
(rab is omitted), ,ij and ,ij,kl also indicate derivatives by the strain,

@=@eij and @2=@eij@ekl. The bond order parameter bab is the power
function of other function fab which involves the 3 body effect.
The function fab in the original Tersoff [24] has not only internal
angle h between atoms l-a-b but also exponential term

exp½k3ðrab � ralÞ3� so that its second order derivative fab;ij;kl results
in bothering verbose form [7]. Modified Tersoff omits the exponen-
tial term so that the derivatives become rather simple as follows;

fab;ij ¼
X
l–a;b

f 0cgðhÞ
rali ralj
ral

þ f cg
0ðhÞ cos h;ij

" #
ð5Þ
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Table 1
Atomic elastic constants and atomic mean stress at 0 K perfect lattice in 3C-SiC (unit
[GPa]).

Si atom C atom Unit cell average

Ca11 311.3 562.1 436.7

Ca12 146.9 89.0 118.0

Ca44 250.5 371.2 310.9
ra
m 14.4 �14.4 0.0

Fig. 1. Dimensions of periodic slab cell with single crack.
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