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a b s t r a c t

We present a novel approach to apply machine learning techniques to build a more robust prediction
model for band-gap energies (BG-E) of chalcopyrites, a class of materials for energy applications in the
fields of solar energy, photocatalysis, and thermoelectrics. Guided by knowledge from domain experts
and by previous works on the field, we aim to accelerate the discovery of new solar materials. Our objec-
tives are two folds: (i) Identify the optimal set of features that best describes a given predicted variable.
(ii) Boost prediction accuracy via applying various regression algorithms. Ordinary Least Square, Partial
Least Square and Lasso regressions, combined with well adjusted feature selection techniques are applied
and tested to predict the band gap energy of chalcopyrites materials. Compared to the results reported in
Zeng et al. (2002), Suh et al. (1999, 2004), and Dey et al. (2014), our approach shows that learning and
using only a subset of relevant features can improve the prediction accuracy by about 40%.

� 2018 Elsevier B.V. All rights reserved.

1. Introduction

Solar energy provides around 2% of the world’s total energy [4].
But it has the potential to provide much more than that if the true
challenges behind its industry are well addressed. Overcoming the
barriers to boost solar power generation requires several engineer-
ing innovations in different fields starting from capturing solar
energy and converting it to useful forms, ending by storing it for
later use.

The main challenge here, is therefore to design powerful, cost-
efficient solar cells made of semiconductors like silicon. When it
comes to designing new solar material, a key step is that of predict-
ing the electronic properties of the prospect compound before
manufacturing it. An important property of any new solar material
is its band gap. It is the energy difference (in eV) between the top of
the valence band and the bottom of the conduction bands in semi-
conductors and insulators [5]. To perform this task, scientists have
mostly relied on appropriate ab initio techniques [6–8]. Standard

Density Functional Theory (DFT) methods, for instance, were the
workhorse of computational materials science for a good while.
They provided acceptable results. However, they get computation-
ally expensive when system size gets very large.

Since the launch of the Material Genome Initiative (MGI) in
2011 by the US government, more efforts have been invested to
address most of the above-mentioned challenges. This initiative
aims mainly to accelerate the discovery, development and deploy-
ment of new materials at a fraction of the cost [9]. This is made
possible by providing the necessary policies, resources and infras-
tructure for collaborative researches.

As we enter this MGI era, it has become crucial to quickly and
accurately predict the band gaps of new materials that have yet
to be synthesized. Applying machine learning techniques to
develop an efficient computational tool for solving this specific
problem is a new yet promising research area.

Our work builds on previous works [1–3] aiming to predict
band gaps of new chalcopyrite compounds using statistical learn-
ing approaches such as Ordinary Least Squares, Partial Least
Squares and Lasso regression methods combined with well
adjusted pre-processing techniques. The used data set comprises
atomic and crystallographic properties of ternary chalcopyrites
semiconductors which are CuFeS2-like compounds that crystallizes
in the tetragonal form (ABC2 formula) [10].
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Our replication and analysis of the previous results indicated
that the predictor’s performances can be enhanced. Our contribu-
tion herein is based mainly on features analysis. In fact, band gap
prediction is still a very challenging task, and it can be related to
several aspects and properties of the compound in question. The
main problem for such applications is that important features that
can lead to reliable predictions are still unknown. Thus, we need to
include as many features as possible. However, a regression model
learned from a training data where a large number of attributes are
irrelevant cannot be robust and may not generalize well to new
test data.

Our goal is, as a first step, to investigate and determine if all of
the previously chosen descriptors [1–3] are relevant and have
meaningful contribution to the prediction process. To this end, fea-
ture selection and ranking algorithms are applied. In a second step,
we investigate the possibility of adding new features to improve
the system’s prediction accuracy. The main focus was on binary
descriptors that reflect the interactions between each pair of the
elements present in the studied compounds. Bond dissociation
energy and bond length measure were selected as prominent can-
didates based on their physical signification. The best subset of fea-
tures, along with the best regression models are then used to
predict the band gaps of over 150 compounds.

2. Related works

Semiconducting chalcopyrites (chemical formula ABC2) have a
special interest for material scientists due to their several techno-
logical applications as well as their non-linear optical properties
[7]. The main interests are to use these materials for energy appli-
cations in the areas of solar cells photocatalysis, and thermo-
electrics [11]. These chalcopyrites exhibit band-gaps that can be
tuned to absorb light of different wavelengths in multi-junction
cells [12], which optimizes the usage of the solar spectrum. The
best example is Cu(In,Ga) Se2 (CIGSe) [13], for which, the solar cell
efficiency has recently been demonstrated at 22.6% [14].

Several studies have started investigating the possible models
that can describe the relationship between the band gap and the
chemical stoichiometries and fundamental properties of the con-
stituents of these chalcopyrites [1–3,15–17].

The pilot study carried out by Zeng et al., in 2001 [1], has laid the
foundation of our work. The authors used artificial neural networks
to estimate the correlation between band gap energies (and lattice
constants) of chalcopyrites and their respective chemical and ele-
mentary properties. They proved that the dependency can, actually,
bemodeled linearlywhich oriented future research towards the use
of linear regression techniques. Using the same descriptors as in
Zeng et al. study, Suh and Rajan (2004) [2] exploited PLS regression
to estimate the underlying linear model. In 2014, [3] went further,
and used more regression techniques (OLS and LASSO for instance)
in order to build a more robust model.

The choice of features, however, remained the same throughout
all these different studies. The included chemical properties were
basically; the Electronegativity (EN) (eV1=2), the Atomic Number
(AN), the Melting Point (MP) (K), Zunger pseudopotential radii
sum (PR) (atomic units, au) and the number of Valence electrons
(VL) as explained by Table 1.

The band gap (BG-E) of the compound ABC2 was predicted as a
function of MPðXÞ;ANðXÞ; ENðXÞ;VLðXÞ and PRðXÞ, where X refers to
any of the three atoms within the compound formula: {A, B, and C}.

3. Proposed approach

We propose a standard statistical learning approach with a
physicist and a computer scientist in the loop. The prime goal is

to accelerate the discovery of new materials for the studied appli-
cation. To this end, four major tasks are performed as detailed in
Fig. 1.

The developed algorithms are based on ab initio calculations
and experiments to analyze various descriptors of electronic and
crystal structure parameters of the considered materials. The gen-
erated input data is pre-processed in order to remove outliers and
normalize all the features to be within the same dynamic range of
values. Various feature selection algorithms are applied in order to
extract the top performing set of features for the predicted vari-
able. We started by analyzing the original set of features [1–3]
and added more features that were likely to correlate with band
gap energy according to experts in the field. Regression analysis
is performed afterward to estimate the underlying models. We
trained single models for the top selected features subsets which
were then evaluated in terms of prediction errors for compounds
with different confidence values in order to assess the accuracy.

3.1. Data acquisition

The first step in our approach is to build our data sets. This step
relied strongly on the expertise of the material scientists in our
research group. Our training data, on which the relevant descrip-
tors are learned and the regression models are built, consists of
both theoretical and experimental data.1 Descriptors are extracted
based on fundamental atomic and crystallographic properties of
the studied materials and according to their physical significance
to the target variable.

We started from the reported data by previous studies [1–3].
We constructed similar data sets in order to replicate the previous
results and explore the possibilities of enhancement. Earlier work
reliedmainly on the five elementary descriptors outlined in Table 1.
In this paper, we propose using additional features that capture the
interactions between the compounds’ elements. We added binary
descriptors like Bond Dissociation Energy (BD) and Bond Length
(BL) as outlined in Table 2.

The Bond Dissociation energies were obtained using the ab initio
density functional theory (DFT) computations employing the
hybrid exchange-correlation functional, Heyd-Scuseria-Ernzerhof
(HSE06) [18]. All our ab initio calculations were performed using
the Vienna Ab Initio Simulation Package (VASP) electronic structure
computer code [19–21]. A kinetic energy cutoff of 500 eV was
found to be sufficient to achieve a total energy convergence of
the energies of the systems to within 1 meV. The optimization of
atomic positions was allowed to proceed without any symmetry
constraints until the force on each atom is less than 5 meV/Å.

The Bond Length measures were obtained using CrystalMaker
software [22]. This software estimates the length of the bonds
based on relaxation of the crystallographic structure of the

Table 1
Description of the features used for Band gap prediction.

Variable name Description

Atomic Number (AN) The number of protons in the nucleus of an atom,
which determines the chemical properties of an
element and its place in the periodic table

Electronegativity (EN) Measure of the tendency of an atom to attract a
bonding pair of electrons.

Melting point (MP) The temperature at which a given solid will melt.
Valency (VL) Measure of the element’s combining power with

other atoms
Pseudo Radii (PR) A measure of the crystal lattice

1 Experimental data refers here to the known band gap energies as reported in
previous works [1–3].
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