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We present the quantification procedure of one-mode phase-field crystals (1PFC) model for face-centered
cubic (fcc) materials for the first time and apply this procedure to study thermodynamics of Ni, Cu, Al and
Pb at the melting point (MP). We use our recently proposed reformulation of 1PFC that facilitates the
quantification procedure of PFC for different materials (Nourian-Avval and Asadi, 2017). First, we calcu-
late the phase diagram of 1PFC using a fast semi-analytical approach by defining the density of the con-
sidered crystals using all the non-vanishing density wave vectors and numerically calculating the
corresponding free energy; e.g., we consider one, three and four non-vanishing density wave vectors
for, respectively, body-centered cubic (bcc), fcc, and hexagonal close-packed (hcp) materials in 1PFC
Solidification model. Then, we quantify 1PFC for solidification/melting simulations of Ni, Cu, Al, and Pb using an iter-
Melting ative procedure. We calculate representative materials properties including elastic constants, coexisting
Metal solid and liquid densities, and latent heat using their derived analytical relations and compare them with
their experimental/computational counterparts. Finally, we use the quantified 1PFC model in computa-
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tional simulations to determine the solid-liquid interface free energy for the considered fcc materials.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The properties of materials are governed by their nano and
micro scale features developed during solidification or other
thermo-mechanical processes of their manufacturing. Therefore,
understanding the influence of processing parameters on the nano
and micro structural features will pave the way for optimizing
materials properties. Since the relationship between the material
properties and processing routs stem from many phenomena tak-
ing place in both atomistic length and diffusive time scales, a mod-
eling system providing atomistic details on diffusive time scale
range is needed for these studies; phase-field crystal (PFC) model
fulfills these characteristics [1-3]. Phase-field model (PFM) can
be also utilized in simulating diffusive transport phenomena but
on micro scale without providing atomistic details. Both PFC and
PFM adopt a smooth transition of the density field at the inter-
faces; e.g. solid-liquid interface. However, the density field in
PFM is constant in both solid and liquid phases (e.g. zero and
one, respectively) [4], contrary to PFC model where the density
field is constant in liquid but a periodic function in solid [1,2].
On the other hand, the widely used atomistic model for materials
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simulation is molecular dynamics (MD), in which the positions of
each individual atom is tracked according to the Newton’s law of
motion and the defined interatomic forces [5-9]. However, despite
the capability of MD in capturing the atomistic details, simulation
by this method is limited to atomistic-vibration time scales, which
is much smaller than the time scale for many material processing
phenomena. So, the capability of coupling the nano length with dif-
fusive time scales has provided a great advantage for PFC method-
ology to simulate a variety of materials phenomena, including
solidification [10-12], grain boundary premelting [13-15], disloca-
tion dynamics [16,17], structural phase transformation [17-20],
crystal growth [21], elastic and plastic deformation [2,22-24],
diffusion-mediated plasticity and creep [25], Kirkendall effect
[26-28], stacking fault [29,30], Spinodal decomposition [3,31],
magnetic systems [32,33], liquid crystals [34-36], glass formation
[37,38], foam dynamics [39], etc.

The original PFC model (one-mode PFC, 1PFC) proposed by Elder
et al. in 2002 [1] was first exploited as a phenomenological
model for two-dimensional (2D) hexagonal lattice structure to
simulate polycrystalline structures including grain boundaries
and dislocations [2,3]. Later on, Elder et al. [3] linked 1PFC to the
classical density functional theory (DFT) of freezing using certain
approximations, which paved the way for quantitative modeling
for PFC. Wu and Karma [40] investigated the equilibrium
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properties of bcc-liquid interface using 1PFC; this was, in fact, the
first published paper on quantitative PFC modeling. They also
determined PFC parameters and calculated solid-liquid interface
free energies and surface anisotropy for the case study of Fe. They
compared the calculated properties with those from Ginzburg-
Landau theory and MD simulations and observed a reasonable
agreement. Jaatinen et al. [41] also considered quantitative PFC
modeling by modifying the work of Wu and Karma to utilize the
solid-liquid coexisting densities calculated by Maxwell’s tangent
line construction between free energy curves. They concluded that
the PFC model derived from DFT overestimates the expansion in
melting and underestimates liquid and solid bulk moduli. There-
fore, in order to improve the quantitative capability of PFC model-
ing, they proposed an eight-order PFC model, which has higher-
order spatial derivatives than 1PFC and includes an extra parame-
ter to correct the calculation of expansion in melting [41,42]. Later
on, Van Teeffelen et al. [11] presented a modified PFC model,
derived from dynamical DFT using less approximations than those
used to derive 1PFC but with the same computational cost; how-
ever, the new model still needs a suitable scaling factor for the
excess free energy.

PFC model has also been utilized for simulating fcc crystal
structures. Wu et al. [43] analyzed two-mode PFC (2PFC) for quan-
titative modeling of the coexistence of fcc-liquid phases and iden-
tified the parameter ranges, where fcc is stable or meta-stable with
respect to bcc. They also derived the analytical expressions for the
elastic constants for both bcc and fcc crystals and concluded that
the non-vanishing amplitude of the second mode is essential for
stabilizing fcc crystal structure. In addition, they observed that
1PFC underestimates all the elastic constants for bcc structures
in comparison with MD computational calculations, while the rela-
tion between the elastic constants is C;; = 2C;; = 2C44. They also
observed that the non-vanishing amplitude of the second mode
in 2PFC modeling of fcc crystal structure improves the elastic con-
stants by dictating only Ci; = Cyq.

Continuing the quantifying PFC model, Asadi et al. [6,44]
employed an iterative procedure to improve the quantifying pro-
cess and also provided more accurate input properties from mod-
ified embedded-atom method (MEAM) MD simulation. In other
works, Asadi and Zaeem [46,47] utilized a modified two-mode
PFC (M2PFC) model for both bcc and fcc crystal structures by con-
sidering three parameters for adjusting the relative solid-liquid
free energies and densities. According to their observations, the
expansion in melting calculated in M2PFC model for Fe (bcc) was
in agreement with the experimental results, while the related val-
ues for Al and Ni (fcc metals) were lower than experiments. In
addition, the calculated elastic constants, C;; and C44, were in
agreement with their computational counterparts, while Cy; was
underestimated for both bcc and fcc crystal structures.

An important consideration for higher-order PFC models such
as M2PFC is that these models contain higher-order spatial deriva-
tives, as a result, increasing the computational cost of the model
significantly; this is especially important for real-space numerical
calculations. Therefore, it is desirable to utilize all the potential
of 1PFC model before applying higher-order PFC models to study
a certain phenomenon. Currently, there is no quantified 1PFC
model for fcc materials. The objective of this paper is to use our
recently developed reformulation of 1PFC [47] that has two extra
non-independent parameters than 1PFC, and examine the quantifi-
cation approaches for calibration of the model for fcc materials. In
addition, we utilize additional sets of reciprocal lattice vectors
(RLVs) in a way that hexagonal close-packed (hcp) crystal structure
is also stabilized through direct free energy minimization in 1PFC.
Furthermore, the model is quantified for Ni, Al, Cu and Pb as case
studies. Representative material properties at melting point
including coexisting solid and liquid densities, elastic constants,

bulk modulus, latent heat, solid-liquid interface free energy are
calculated and compared with their experimental/computational
counterparts in literature.

2. Modeling

Helmholtz free energy (F) for the reformulation of 1PFC [47]
contains two new parameters (x; and k;) as

F:/{%¢(r)[a+z(q3+leqgvz+K2v4)]¢(r)+§¢(r)4}dr7 1)

where ¢ represents the density field and o, 2, q,, and g are 1PFC
model parameters. It is worth mentioning that the extra parameters
K1 and x, do not add new degrees of freedom to 1PFC model rather
they only help the quantification process; 1PFC free energy may be
obtained by a set of simple change of variables [47]. For simplicity,
it is more convenient to convert the 1PFC free energy functional into

dimensionless form by substituting €= —o/Aq5, ¥ = ¢+/g/7q3,
x =qh, and F* = (g/7*q3)F into Eq. (1)
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As in PFC modeling the crystal density field is considered to be con-
stant in liquid state, the free energy of liquid is obtained via integra-
tion of Eq. (2) when =y, = constant as
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On the other hand, the density field for solid state can be obtained
by writing the density field i in terms of RLVs

U=+ Y AT+ Bl (4)
l k

where  is the average density in the solid phase, A;, By are the
amplitudes of the corresponding RLV, and i is the imaginary unit.
Considering that ¢;, ¢, and ¢s are a set of primitive RLVs in

three-dimensional space, 6,» is written as
Gi:n1d1+n262+n3d37i:l>k7'“a (5)

where nq, 1, and n3 are integer numbers. It is worth mentioning

that the vector of G for the first RLV only refers to the first
nearest-neighbor atoms to reconstruct a given crystal symmetry
and the second RLV considers the second nearest-neighbor atoms,
and so on. On the other hand, it has been shown that, in the case
of bcc crystal structure, the first RLV approximation of the density
field leads to acceptable quantitative results [37,42,48]. While in
the case of fcc crystal structure, it is essential to consider non-
vanishing amplitudes of other density waves to stabilize this struc-
ture through direct free energy calculations, otherwise tetragonal
shear modulus will be equal to zero, which makes this structure
mechanically unstable [43]. The method to consider additional RLVs
in a crystal density approximation is straightforward. First, an RLV
is added to Eq. (4), then the free energy calculated using Eq. (2).
The free energies calculated with/without the additional set of
RLV were compared. The process of adding RLVs continued until
the calculated free energy converged. Thus, the density field can
be determined by considering the contribution of (111), (200)
and (220) RLVs for fcc crystal structure. Therefore, the dimension-
less density field is

Ve = U + 8As[cos(qx) cos(qy) cos(qz)] + 2B[cos(2qx)
+ cos(2qy) + cos(2gz)] + 4C;[cos(2gx)cos(2qz)
+ cos(2qy)cos(2qz) + cos(2gx)cos(2qy)], (6)
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