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a b s t r a c t

We present a tool called Arrangement of Interface Dislocation Arrays (AIDA) for enumerating all disloca-
tion networks that satisfy the quantized Frank-Bilby equation for any interface between cubic crystals
with a single-atom basis, i.e. FCC/FCC, BCC/BCC, and FCC/BCC interfaces. The set of enumerated solutions
is exhaustive in the sense that AIDA accounts for all independent combinations of symmetry operations
of the neighboring crystals and it scans over combinations of Burgers vectors drawn from a predefined set
of admissible vectors for each crystal. This tool may be used to deduce the range of dislocation-based rep-
resentations of an interface given its crystallographic character and a predefined set of admissible Burgers
vectors. It may also be used in conjunction with electron microscopy or atomistic modeling for the iden-
tification and analysis of interface defect structures.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Modeling the internal structure of interfaces between crys-
talline solids is of great interest in materials science [1–3]. Several
distinct approaches to this problem have been explored, including
ones based on crystal symmetry [4], the distribution of locations of
‘‘best match” (O-lattice points) [5], explicit lattice overlap [6], and
fully atomistic methods [2]. The present work focuses on
dislocation-based models of interface structure, described analyti-
cally using the quantized Frank-Bilby equation (qFBE) [7–9]. We
present a tool called AIDA—abbreviated from ‘‘Arrangement of
Interface Dislocation Arrays”—that enumerates all dislocation net-
works that solve the qFBE for a given interface. This tool is an
advance towards the full automation of interface structure predic-
tion via the qFBE.

The utility of dislocation-based models has been demonstrated
repeatedly in studies on the physical properties of interfaces [1,10]
as well as on interface interactions with extrinsic defects [3,11,12].
A key advantage of these models is that they predict elements of
the internal structure of interfaces from interface crystallographic
character alone, i.e. without considering the locations of individual
atoms. The connection between crystallographic character and
interface structure is expressed through the qFBE:
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The left-hand side of this equation gives the net Burgers vector

content, B
!
, crossing a probe vector p

!
within the interface [7,8]:

B
!
¼ ðAF�1 � BF

�1Þ p! : ð2Þ
Here, AF and BF are deformation gradients that map a reference

single crystal into the two adjacent crystals that form the interface.
These deformation gradients describe the complete crystallo-
graphic character of the interface. In the case of grain boundaries
(GBs), AF and BF may be pure rotations. For heterophase interfaces,
both AF and BF in general additionally contain stretches. The right-

hand side of Eq. (1) decomposes B
!

into contributions from up to
three arrays of discrete dislocations. Each array is indexed by i
and contains straight, parallel dislocations with Burgers vectors

b
!

i, line directions n̂i, and inter-dislocation spacing di. The vector
n̂ is the unit vector normal to the interface. The Burgers vectors
in Eq. (1) are defined in the same single-crystal reference state
upon which AF and BF operate.

A challenge for predicting interface structure using dislocation-
based models is that the qFBE has numerous solutions. For a given
interface—specified by AF, BF, and n̂—a solution of the qFBE is a
complete description of an interface dislocation network via the

quantities b
!

i, n̂i, and di. As will be discussed in Section 3, the mul-
tiplicity of qFBE solutions has two sources. First, every solution
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requires a choice of three linearly independent Burgers vectors for
the interface dislocations. Many such choices are possible—given a
pre-defined set of admissible Burgers vectors—leading to many
solutions. Second, the deformation gradients AF and BF may be
modified by the symmetry elements of the crystals that meet at
the interface, giving rise to physically equivalent yet mathemati-
cally distinct descriptions of the interface crystallographic charac-
ter. Every such description yields different solutions to the qFBE.

Several approaches to selecting the best qFBE solution from
among all the possible ones have been proposed [5,13–16]. The
present study will not address this topic. Instead, it will focus on
exhaustive enumeration of all possible solutions of the qFBE for
interfaces formed by joining crystals that are either face-centered
cubic (FCC) or body-centered cubic (BCC). Such an enumeration
is a necessary first step in the selection of a best qFBE solution,
regardless which criterion is used for the selection. We automate
the enumeration of qFBE solutions by implementing it as a
MATLAB script, which is termed AIDA and provided as Supplemen-
tary material. This tool may be used to deduce the range of possible
interface dislocation networks based on interface crystallographic
character. It may also be used in conjunction with electron micro-
scopy or atomistic modeling for the identification and analysis of
interface defect structures.

Given the crystallographic character of an interface, AIDA com-
putes and outputs all of the solutions of the qFBE for that interface.
Each solution consists of the number of independent sets of dislo-
cations at the interface as well as the dislocation spacing, line
direction, and Burgers vector for each set. Burgers vectors are
reported in an arbitrary, pre-defined, single crystal reference state.
Vattré et al. showed that general deformation gradients applied to
the reference state do not change the number of sets of disloca-
tions in a qFBE solution nor their dislocation spacings or line direc-
tions [15]: these quantities do not depend on the choice of
reference state. By contrast, Burgers vectors do change with the
choice of reference state. A unique, correct reference may never-
theless be found, fixing the magnitudes and directions of the inter-
face dislocation Burgers vectors, as well [15–17]. However, doing
so requires augmenting the qFBE problem with an elasticity calcu-
lation and therefore falls outside the scope of the present work.

In Section 2, we describe AIDA’s method for solving the qFBE.
Section 3 discusses the enumeration of distinct qFBE solutions.
We present the step-by-step implementation of AIDA in MATLAB
in Section 4. Section 5 presents example applications of AIDA to
several interfaces and Section 6 concludes with a discussion.

2. Solving the qFBE

2.1. Geometric representation of solutions to the qFBE

To solve the qFBE, we adapt an approach initially presented by
Bollmann [5] and further developed by Knowles [14]. Given AF and
BF, we compute vectors
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. The vectors b

!
i, b
!

j, and
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k are three linearly independent Burgers vectors selected from a
pre-specified set of admissible Burgers vectors defined in the
single-crystal reference state upon which AF and BF operate in the

Frank-Bilby formalism [15,16]. Every V
!

i is associated with one set
of straight, parallel dislocations with line directions

n̂i ¼ V
!

i � n̂

jV!i � n̂j
ð4Þ

and inter-dislocation spacing

di ¼ 1

jV!i � n̂j
: ð5Þ

It is straightforward to verify that Eqs. (4) and (5) are solutions
to the qFBE by substituting them back into Eq. (1).

Vectors V
!

i may be interpreted as representing arrays of parallel

planes, whose orientation in space is given by the direction of V
!

i

and whose spacing is the inverse of the norm of V
!

i. The lines of
intersection between these planes and the interface plane, with

ˆ

ˆ ˆ

Fig. 1. Effect of the magnitude and direction of V
!

i on dislocation spacing, di . Dislocation spacing increases as (1) the orientation of V
!

i approaches that of the interface normal n̂
or (2) the norm of V

!
i approaches zero.
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