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a b s t r a c t

According to Gibbs phase rule, ternary two phase alloys have a single degree of freedom at equilibrium at
a given temperature. Thus, multiple precipitate-matrix equilibrium compositions are possible at the
interface. From Philippe-Voorhees’ (PV) theory (Philippe and Voorhees, 2013), it is known that during
coarsening in multicomponent alloys, precipitate-matrix compositions at the interface during coarsening
are not just dependent on the Gibbs-Thomson effect but also on the relative mobilities of the solute ele-
ments. Our computer simulations, based on a phase field model, show that this effect of different solute
diffusivities on size-dependent particle composition is more pronounced in alloys richer in the slower dif-
fusing solute.

� 2018 Elsevier B.V. All rights reserved.

1. Introduction

Coarsening, or Ostwald ripening, is observed during late stages
of phase transformations; in the case of coarsening of precipitates
embedded in a matrix phase, there is an increase in average parti-
cle size, accompanied by a corresponding decrease in particle num-
ber density (the number of particles per unit volume). According to
the classical LSW theory, due to Lifshitz and Slyozov [2] and Wag-
ner [3], coarsening is characterized by a scaling regime in which (a)
the number density is inversely proportional to time, (b) the cube
of the average particle size increases linearly with time, and (c) the
scaled size distribution of particles is time invariant.

The LSW theory has been extended in two key directions to deal
with (a) coarsening in systems with a finite volume fraction of the
particle phase, and (b) coarsening in ternary and higher order
systems.

Due to its mean field nature, and the way it solves the underly-
ing diffusion problem, LSW theory is applicable for coarsening in
systems with a vanishingly small volume fraction of particles.
There have been several approaches, both theoretical [4–6] and
computational [7–9], which have examined coarsening in systems
with finite precipitate volume fractions (f v ) (see Ratke and Voor-
hees [10] for a book-length review). Their predictions are identical

to those of LSW theory, but the quantitative details are different;
specifically, the scaled size distribution is broader, and the coarsen-
ing rate is higher in systems with larger f v .

Precipitate coarsening in ternary and higher order systems is
more complex to study due to at least two reasons: thermodynam-
ically, there is an extra degree of freedom for (local) chemical equi-
librium across the particle-matrix interface, and kinetically, the
diffusivity of the solute species could be different. Morral and
Purdy [11,12] have argued that in the multicomponent systems,
coarsening is independent of the solution thermodynamics of the

system because the thermodynamic term, @2G
@cicj

� �
, appearing in both

diffusivity and Gibbs-Thomson coefficient cancels itself; However
coarsening in multicomponent systems would still depend on the
mobility matrix. Kuehmann and Voorhees (kV) [13], have extended
the LSW formalism to ternary alloys by invoking the ternary ver-
sion of the Gibbs-Thomson effect, and by making precipitate and
matrix interfacial compositions depend on the rate of solute arrival
at the interface. Once again, while the quantitative details differ,
the predictions of kV theory are the same as those of LSW theory.
In particular, it is notable that the shape of the size distribution
curve is the same in LSW theory (for binary alloys) and kV theory
(for ternary alloys). A more recent extension of this work by Phi-
lippe and Voorhees (PV) [1] has reiterated these conclusions for
coarsening in general multicomponent systems.

Since their treatment of the diffusion problem is similar to that in
LSW theory, the kV and PV theories are also applicable only to sys-
tems with vanishingly small volume fractions. For multicomponent
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systems with finite f v , a general theory is not available, and com-
puter simulationswill continue toplayan important role indevelop-
ing our understanding further.

In this paper, we have used a ternary Cahn-Hilliard model to
study coarsening in a ternary (ABC) alloy system in which the BC
binary is isomorphous, and the AB and AC binaries exhibit a misci-
bility gap in the phase diagram. Our model is a ternary extension of
the classical Cahn-Hilliard model for a binary alloy, and allows for
different solute mobilities and is similar to other studies (see Refs.
[14–18] and references therein).

The paper is organized as follows: In Section 2 we describe the
formulation of the Cahn-Hilliard model used in this study. Section 3
presents our results in terms of microstructure, various tests to
establish that the simulations enter the scaling regime, and the
effect of differential mobility on the coarsening rates and precipi-
tate composition. In Section 4 we discuss these results vis-a-vis
other experimental and computational studies regarding coarsen-
ing in multicomponent systems. Finally we present the conclusions
of this study in Section 5.

2. Model formulation

We consider a ternary alloy system in which the local composi-
tion is given by ðcA; cB; cCÞ where ci is the mole fraction of compo-
nent i. These variables obey cA þ cB þ cC ¼ 1 everywhere. We follow
Huang et al. [19] (who studied the spinodal decomposition in tern-
ary polymer blends) in developing the formulation given below.
We begin by writing the free energy of a ternary alloy with non-
uniform composition fields ci ~rð Þ by generalizing the Cahn-Hilliard
formulation [20].

F ¼ Nv

Z
V
½f ðcA; cB; ccÞ þ

X
i¼A;B;C

jiðrciÞ2� dV : ð1Þ

where Nv is the No. of moles per unit volume. Eq. (1) consists of two
parts:

1. The bulk free energy (per atom) fð Þ which depends on local
composition given by ðcA; cB; ccÞ.

2. The gradient energy terms j rcð Þ2, which accounts for the
energy due to non-uniformity in composition fields.

For the bulk chemical free energy per atom f cA; cB; cCð Þ, we have
used a regular solution model:

f cA; cB; cCð Þ ¼ 1
2

X
i–j

vijcicj þ
X
i

cilnci; ð2Þ

where i; j ¼ A;B;C and vij ¼ vji is the effective interaction energy
between components i and j. From the nearest neighbour bond
model, vAB (for example) may be obtained as:

vAB ¼ Z½2EAB � EAA � EBB�
2kBT

; ð3Þ

where EAB; EAA; EBB are the bond energies between A/B,A/A and B/B
bonds, respectively, Z is coordination number, kB is the Boltzmann
constant, and T is the absolute temperature. In our study we have
used vAB ¼ 3:2;vAC ¼ 3:2, and vBC ¼ 0; the last condition (vBC ¼ 0;
i.e., B and C form an ideal solution) ensures that there is complete
solubility along B-C edge of the ternary phase diagram.

The evolution equations are given by:

@cB
@t

¼ MBB r2 @f
@cB

� �
� 2 jB þ jAð Þr4cB � 2jAr4cC

� �

�MBC r2 @f
@cC

� �
� 2 jC þ jAð Þr4cC � 2jAr4cB

� �
ð4Þ

and

@cC
@t

¼ MCC r2 @f
@cC

� �
� 2 jC þ jAð Þr4cC � 2jAr4cB

� �

�MBC r2 @f
@cB

� �
� 2 jB þ jAð Þr4cB � 2jAr4cC

� �
ð5Þ

We solve Eqs. (4) and (5) using a ternary extension [21] of semi-
implicit Fourier spectral method [22].

2.1. Interfacial energy and interfacial width

In Cahn-Hilliard type formulations the interfacial energy and
width are interconnected, and depend on the gradient energy coef-
ficients, ji, and the height of the barrier between the free energies
of the two phases in equilibrium across this interface. The interfa-
cial energy of a ternary two phase system is given by Eq. (6).

rab ¼ Nv

Z 1

�1
Df þ

X
i¼A;B;C

ji rcið Þ2
" #

dx ð6Þ

where Df is given by Eq. (7) in which f cið Þ is the bulk free energy

given by Eq. (2) and la=b
i is the chemical potential of species i when

a and b phases are in equilibrium with each other.

Df ¼ f cið Þ �
X
i

cila=b
i ð7Þ

We have measured the interfacial energy given by Eq. (6), using
1D simulation in which the two phases are equilibrated.

In our simulations jA ¼ jB ¼ jC ¼ 15. The value of ji should be
such that the gradients at the interface are sufficiently gentle so
that the interface is sufficiently resolved. In our calculations we
have used Dx ¼ 1, the interfacial energy is c ¼ 2:32, and interface
width is w ¼ 10:82.

3. Results

We have used a model alloy system in which the AB and AC bin-
ary alloys have a miscibility gap, and the BC binary is an ideal solu-
tion. Specifically, we have used vAB ¼ vAC ¼ 3:2, and vBC ¼ 0; the
isothermal section of the ternary phase diagram for this system
is shown in Fig. 1, which also marks the compositions of six alloys
(three alloys each on two different tie-lines) we have studied. We
will refer to the tie-lines with the smaller and larger slopes as,
respectively, the low-C and high-C tie lines. On each tie line, we
have chosen alloys with three different equilibrium volume frac-
tions of precipitate phase i.e. 10.9%, 16.7% and 20.4%. For easy iden-
tification, these alloys are referred to as 10%, 15% and 20% alloys.
The alloy compositions studied in our simulations along with their
corresponding tie line end compositions are given in Table 1.

Fig. 1 also shows the region of phase diagram which undergoes
spinodal decomposition. In this region, the Jacobian of free energy

with respect to composition is not positive definite i.e. @2f
@ci@cj

��� ��� < 0.

Our primary focus is on studying the effect of difference in
solute diffusivities on coarsening. Since diffusivity does not appear
directly in the model, the difference in solute diffusivity is imple-
mented through differential mobilities. Specifically, our simula-
tions use either MC ¼ 1 or MC ¼ 0:1, while MA ¼ MB ¼ 1 always.

For each alloy, we performed four independent simulations;
each simulation starts with a number of precipitates of radius ro
which is just above the critical radius. They are placed at random
locations in a 2D simulation cell (with 1024� 1024 grid points,
and Dx ¼ Dy ¼ 1) in such a way that each precipitate is separated
by at least 4ro from its neighboring precipitates.

Since our primary focus in this part of the study is on coarsen-
ing, the initial number of precipitates is such that the matrix has
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