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a b s t r a c t

Atomistic rigid lattice Kinetic Monte Carlo is an efficient method for simulating nano-objects and surfaces
at timescales much longer than those accessible by molecular dynamics. A laborious part of constructing
any Kinetic Monte Carlo model is, however, to calculate all migration barriers that are needed to give the
probabilities for any atom jump event to occur in the simulations. One of the common methods of barrier
calculations is Nudged Elastic Band. The number of barriers needed to fully describe simulated systems is
typically between hundreds of thousands and millions. Calculations of such a large number of barriers of
various processes is far from trivial. In this paper, we will discuss the challenges arising during barriers
calculations on a surface and present a systematic and reliable tethering force approach to construct a
rigid lattice barrier parameterization of face-centred and body-centred cubic metal lattices. We have pro-
duced several different barrier sets for Cu and for Fe that can be used for KMC simulations of processes on
arbitrarily rough surfaces. The sets are published as Data in Brief articles and available for the use.
� 2018 The Authors. Published by Elsevier B.V. This is an open access articleunder the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Atomic diffusion on metal surfaces is a long term process that
may induce undesirable topological modifications down to nanos-
cale, making these changes practically unnoticeable on large
experimental surface areas which easily range from square
micrometers to square centimetres. Understanding diffusion pro-
cesses, including surface diffusion, becomes particularly important
when dealing with applications that demand high technological
precision (6 1 lm), such as the components of accelerating struc-
tures of the future Compact Linear Collider (CLIC) [1]. In CLIC, the
accelerating structures are designed to operate for extensive times
under high gradient electromagnetic fields, which present addi-
tional challenges for keeping the metal surfaces unmodified. For
instance, surface diffusion enhanced by an electric field is believed
to induce nanoscale surface roughening on copper parts of the
accelerating structures. The roughening leads to uncontrollable
appearance of local vacuum discharges, damaging the surface
and increasing the power consumption, thus decreasing the effi-
ciency of the accelerator [2,3].

It is important to note that surface diffusion may play a crucial
role also on a nanoscale, in the process of shaping of growing
nanoparticles. For example, in [4], we showed that in a magnetron
sputtering inert gas condensation chamber, iron nanoclusters grow
cubic or spherical depending on sputtering intensity through the
competition between surface diffusion and atom deposition.

The evolution of surfaces is even on a nanoscale a long-term
process, not easily accessible by many existing simulation models.
The kinetic Monte Carlo (KMC) method was specifically developed
to simulate slow diffusional processes, which take place while the
system evolves towards the potential energy minimum. Unlike
other Monte Carlo methods, KMC is not only able to capture the
ground state of thermodynamic equilibrium, but also able to esti-
mate sufficiently well the kinetic path and the required time of a
system to move towards the ground state [5]. The latter is enabled
through the residence time algorithm [6], which estimates the
time needed to complete a single transition.

The physics behind the KMCmodel is described by the probabil-
ities of diffusion transitions. These probabilities can be estimated
via transition energy barriers. Thus, a successful KMC model relies
on appropriate estimation of the energy barriers of all possible
transitions in the system. The most accurate methods, thus far,
involve calculations of the barriers on the fly using the dimer
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method of finding potential transition paths on the potential
energy surface [7] or applying self-learning procedures during
the simulation [8–10]. Such methods usually operate off-lattice,
allowing the inclusion of a large variety of possible transitions in
the system, and require heavy computational resources. It is also
common to use more simplified approaches for estimating the bar-
riers, such as the approach of counting broken and newly forming
bonds (the bonds before and after the transition) [11–13]. Such
methods are less time consuming and easy to implement but they
inevitably increase the uncertainty of the simulation results.
Sophisticated mathematical techniques have been recently applied
to calculate the energy barriers. Among them are cluster expansion
[14,15], genetic programming [16], and artificial neural network
[17–19] approaches. These methods are used to predict the energy
barriers based on the local atomic environment. In [3], we pre-
sented the atomistic KMC (AKMC) model Kimocs for metal sur-
faces, in which we predefine the allowed transitions in the
system and calculate the sets of energy barriers in advance.

Kimocs was designed to simulate evolution of nanofeatures on
metal surfaces. It is clear that e.g. molecular dynamics (MD) meth-
ods are able to describe similar processes more accurately, since all
the atomic configurations, which the system may have while
evolving towards the energy minimum, occur naturally in MD.
However, the limited time scale of MD methods does not allow
to obtain any appreciable changes of a surface morphology with
significant features and at temperatures well below the melting
point. KMC, on the other hand, offers the possibility to reach rather
long time scales with reasonable computational costs, provided
that all the atomic jumps are described within the rigid lattice
framework.

Since Kimocs was developed with the aim of simulating the
temporal evolution of large nanofeatures, it was crucial to employ
a parameterization scheme, which is both efficient and sufficiently
accurate. We adopted the rigid lattice approximation, which
describes an atomic system with all atoms occupying well defined
positions in a given crystal structure. Within the rigid lattice
approximation, a local atomic environment can be described by a
finite number. Although, the rigid lattice approximation has inevi-
table intrinsic limitations (for example, if surface reconstruction is
expected to occur during the process simulated by KMC on a rigid
lattice, such process will not be taken into account), it is an effi-
cient approximation to develop fast algorithms that are minimiz-
ing computational costs.

In Kimocs, we constrain the transitions in a system to atomic
jumps into vacant lattice sites, which we will henceforth call
vacancies. The jumps may happen on the surface as well as in
the bulk.

The use of a rigid lattice and the limitation on the variety of
transitions make it possible to precalculate the sets of barriers
for each material (Cu and Fe in this work). Precalculation of the
barriers allows us to reach the desired efficiency of the simulation
algorithm that only needs to assign tabulated barrier values to
atomic jumps in this case. To assure the accuracy of calculated bar-
riers we use the Nudged Elastic Band method. Although such a
parameterization scheme seems to be straightforward and easy
to implemented, we faced a number of challenges, which are diffi-
cult to circumvent.

In this article, we will focus on the calculations of energy barri-
ers for AKMC models with a rigid lattice. We will discuss the chal-
lenges of the rigid lattice parameterization and how these
challenges can be overcome in order to precalculate the migration
energy barrier sets. We will present the tethering force approach,
which allows to create nearly complete sets of barriers for all pos-
sible transitions on a rigid lattice. We are using this approach
together with the parameterization scheme of the Kimocs model,
but it is applicable for any other parameterization scheme in a rigid

lattice, where possible transitions are restricted to a certain type,
e.g. first nearest neighbour jumps in face-centred cubic (FCC) lat-
tices (as is the case in Kimocs).

The structure of this paper is as follows. In Section 2, we provide
some details of our KMC model Kimocs and parameterizations that
have been used with it earlier. In Section 2.3 we describe the chal-
lenges that arise when migration barriers are calculated on a rigid
lattice of FCC and BCC structures. In Section 2.4 we present the pos-
sible solutions to circumvent the problems described in Section 2.3
and introduce the tethering force approach (Section 2.4.2), which
allows for calculations of the barriers on semi-rigid lattice, restrict-
ing the freedom of surface atoms to relax far away from they posi-
tions on a rigid lattice. In Section 3, we present different sets of
migration barriers and discuss the limitations of each set along
with the limitations of the Kimocs parameterization approach in
general. In Section 3.2 we concentrate specifically on the sets
where tethering is used and how this approach affects the KMC
simulation results. Finally, we summarize our conclusions in
Section 4.

2. Methodology

2.1. Atomistic Kinetic Monte Carlo on a rigid lattice

Before describing the challenges, which we encountered during
the parameterization of our AKMC code Kimocs [3] for simulations
of surface diffusion processes, we will briefly outline the basic
principles of a rigid lattice AKMC model in general and describe
in detail special features of our Kimocs code. In an AKMC algorithm
within the rigid lattice approximation, a diffusion process proceeds
via atomic jumps to a neighbouring vacancy. The event, which
includes the choice of an atom to jump and the jump itself, is
selected randomly, but with respect to the magnitude of the corre-
sponding transition rates, which are compared for all events. This
way, more probable events occur more frequently. The transition
rates for all events in the system are calculated according to the
Arrhenius formula for thermally activated processes:

C ¼ m exp
�Em

kBT

� �
; ð1Þ

where m is the attempt frequency for the transition to occur, kB is
the Boltzmann constant, T is the temperature of the system, Em is
the migration energy barrier, which the atom needs to overcome
in order to move from one lattice site to another. For simplicity, m
is considered to be the same for all the transitions.

In Kimocs, the possible jumps in the system are restricted to
primarily 1nn jumps in FCC and BCC materials, but 2nn jumps
may also be allowed if necessary.

We precalculate the full set of the migration energy barriers, Em,
for all possible 1nn (and 2nn for BCC) jumps in the system to
reduce the computation costs of simulations. The parameterization
of the Em barriers is done within the 1nn and 2nn shell. Taking into
account only the atoms in the nearest neighbourhood would result
in insufficient accuracy, since the interaction with the atoms in the
2nn position is also quite strong in both FCC and BCC lattices.

Using both 1nn and 2nn shells in the parameterization scheme
allows us to reach higher accuracy but leads to the full 26 (20 in
BCC) neighbouring atoms description, which we will further refer
to as the 26D parameterization scheme. In this scheme, if all barri-
ers are to be calculated, then even in a mono-elemental metal
� 226 barriers are needed.

The original more approximative parameterization scheme of
Kimocs uses only four parameters to describe events and we will
therefore refer to it as the 4D parameterization scheme. Within
this scheme, each jump event is represented by four numbers,
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