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a b s t r a c t

Molecular dynamics (MD) simulation is a fundamental tool in computational materials science. With the
development of parallel supercomputers, researchers can access the detail atomic responses of materials
with MD simulations at unprecedented scales of physical and time. However, the size of generated output
datasets is also growing rapidly, which poses a serious challenge for traditional data analysis methods.
Therefore, parallel analysis methods to support faster and more scalable manipulation of atomic data
are desperately needed. In this paper, we present a scalable parallel framework to meet the requirements.
It allows users to implement a parallel analysis program using a simple interface, make use of the existing
sequential analysis codes, and carry out distributed-memory post-simulation data analysis. We have
integrated three popular microstructure characterization methods (lattice structure identification,
Voronoi analysis, and Wigner-Seitz defect analysis) based on this framework. Performance evaluations
run on massively parallel process computers with 109 atoms on up to 1024 processor cores demonstrate
the scalability and efficiency of the proposed framework. The proposed framework is helping accelerate
large-scale MD data analysis to a new level.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Molecular dynamics simulations are widely used to study the
dynamic behavior of multiple-particles systems and have been
successfully applied in many fields of material science research
[1–4]. With parallel supercomputers popularly deployed around
the world, researchers are able to conduct these simulations at
unprecedented scale and performance. For example, using modern
software [5,6] and hardware [7] techniques, MD codes can run
efficiently on petascale computers simulating important physical
processes with billions of atoms [8]. Accompanied with these
large-scale simulations, output datasets (i.e., atomic configurations
or trajectories) on the order of gigabytes or terabytes are pro-
duced—a scale that is several orders of magnitude larger than what
can be deal with on an average desktop computer. In order to use
these vast and information-rich datasets to gain scientific insights,
advanced computational analysis, visualization and interpretation
technologies are urgently required.

While great efforts have gone into the design of MD simulation
algorithms and tools, the analysis technology of output datasets is

unable to keep pace with the rapid development of scalability and
performance of MD simulations, and is usually relegated to shared-
memory processing. Within the last decade, a considerable amount
of atomistic analysis software packages are released. Stukowski
designed a 3D visual analysis tool named OVITO [9] for post-
processing atomistic data of MD and Monte Carlo simulations.
OVITO integrates several microstructure analysis functions such
as atomic strain analysis, common neighbor analysis, cluster anal-
ysis, dislocation analysis, and Wigner-Seitz defect analysis [10]. Li
developed an efficient atomistic configure viewer named AtomEye
[11]. It provides many customizable functions to identify and
accentuate certain structural characters of MD datasets, and it is
a general tool to survey the microstructures evolutions of materials
under specific loading conditions. Naveen et al. introduced
MDAnalysis [12], a framework for structural and temporal analysis
of MD trajectories. Robert et al. released a library named MDTraj
[13] which is comparable to MDAnalysis. The code supports a wide
range of data formats and provides many trajectory analysis capa-
bilities including root mean squared deviation, DSSP secondary
structure assignment and the extraction of common order param-
eters. Both MDAnalysis and MDTraj are Python-based libraries,
facilitating rapid code development by using the extensive pack-
ages in the scientific Python ecosystem. Several other software
packages exist (e.g., CHARMM [14], VMD [15], and GROMACS
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[16]) that enable users to analyze MD datasets. However, all tools
mentioned above are designed for doing atomistic post-processing
in a shared-memory environment and assume that the entire data-
set to be analyzed could fit into the main memory of computers.
Efficient and effective though they are for analyzing a dataset with
million scale atoms, these analysis tools lack the necessary scala-
bility and performance to handle very larger MD systems. The
widening gap between high-performance MD simulations and data
analysis has mounted to such a point that novel techniques need to
be developed to tackle the big data problem. Otherwise, it would
hamper scientists’ ability to understand and interpret large-scale
simulation results, hereby defeating the purpose of developing
large-scale MD simulations [17].

The analysis of large-scale MD simulations is computationally
expensive and requires sufficient working memory to accommo-
date the entire atomistic dataset. To eliminate this computation
and memory constraint, a distributed-memory scalable parallel
computational solution is the only feasible approach. Actually,
many researchers agree that data analysis algorithms not only
need to be parallel, but also must scale to the same size and effi-
ciency as the simulations [18]. By distributing the atomistic data
and analysis tasks over more computer processors, user’s post-
processing requests can get faster response, accesses to all data
at full resolution are possible, and scientific discoveries are subse-
quently accelerated. By contrast, many common analysis frame-
works (e.g., MapReduce [19], Paraview [20], and VISIT [21]) that
have been developed for distributed-memory environments are
not directly targeted for MD simulation studies.

In this paper, we focus on overcoming the bottlenecks encoun-
tered by microstructure analysis programs that deal with large-
scale atomistic datasets using hundreds to thousands of processor
cores. At first glance, it might appear that parallelizing traditional
analysis code could solve the problem. However, the analysis needs
for material scientists are always varied, it is time-consuming and
inefficient to develop parallel analysis program in a case-by-case
mode. On the other hand, parallel computing requires substantial
programming efforts and material researchers may not be experts
in computer science. These are dual challenges posed by large-
scale MD data analysis. To address these challenges, we have
developed a flexible processing framework, which consists of an
interface that allows a user to write analysis programs sequen-
tially, and the machinery that ensures these programs execute in
parallel automatically. We demonstrate how sequential analysis
algorithms and data-parallel can be integrated into a framework
to solve mentioned challenges. Our main contribution is an alter-
native end-to-end solution to enable microstructure analysis of
MD datasets at previously unexplored scales. To the best of our

knowledge, no other existing MD post-simulation data analysis
tools provide similar efficiency and scalability to support parallel
analysis on very large supercomputers.

2. Overview of the scalable parallel analysis framework

Before we are going to discuss the framework and its design, the
data-parallel environment is described firstly, and then we briefly
introduce software packages on which we depend for this work.

2.1. Data parallelism

Most of the current supercomputer architectures consist of
multiple independent compute nodes, each of which is configured
with several multiple-core CPU processors sharing in-node mem-
ory (see Fig. 1). Different processors have access only to their local
memory, and access to remote data is accomplished by passing
messages (i.e., Message Passing Interface, MPI). Based on this archi-
tecture, methods of data parallelism can be classified into two
broad categories: shared-memory model (or thread-level paral-
lelization) and distributed-memory model (or process-level paral-
lelization). In shared-memory model, little effort is required to
break up a problem into parallel tasks because thread support
libraries (e.g., OpenMP) shield thread-parallel details for users.
However, shared-memory model is constrained to a single node
and is usually memory-bound. Thus, thread-level parallel pro-
grams address many of limitations of scalability. Conversely,
distributed-memory model utilizes system-wide compute nodes
and CPU cores in order to satisfy scalability constraints. It dis-
tributes the data across many different nodes which operate the
data in parallel, and thus could scale to very large systems.

2.2. Flexible processing framework

In general, scalable parallel analysis of large-scale MD datasets
poses several hurdles among which the most pressing challenges
are: the decomposition of the analysis problem among a large
number of processors, the efficient data exchange among them,
scalable analysis algorithms, and data transport between proces-
sors and a parallel storage system. Inspired by the work of Tu
et al. [17] and Google’s MapReduce framework [19], our main idea
is to provide a data-processing architecture that supports parallel
execution of microstructure analysis programs and a user-
friendly, unified programming interface that allows users to add
new functionalities easily. The analysis framework encapsulates
modules that are reusable for different analysis applications, while

Fig. 1. The typical distributed-memory infrastructure of supercomputers.
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