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a b s t r a c t

Self-assembly is one of the most promising ways to develop novel materials with high performance.
Thanks to the flexibility in treating of the topological changes in systems, the phase-field approach has
emerged as a method of choice to study this phenomenon at mesoscale. In recent years, the phase-
field equations have also been upgraded to incorporate the atomic scale effects. In this work, we propose
an efficient numerical method based on the generalization of the Fourier-spectral Eyre’s scheme, to sim-
ulate the dynamics of self-assembly, using the phase-field model at different time and length scales. To
show its versatility, the method is explicitly implemented, and numerically tested, for three phase-field
models describing patterned structure in systems: the modified Cahn-Hilliard equation for irradiation
induced patterned microstructures at mesoscale, and the Phase-field Crystal and Continuous Atomic
Density Functional methods, to study the formation of complex crystal structures at atomic scale.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

The concept of self-assembly refers to the spontaneous forma-
tion of patterns or structures, stemming from the competition
between repulsive and attractive interactions in a system [1–3].
Lately, this process has turned into a new paradigm for structure
design in nanotechnology [4], material sciences [5], and biophysics
[6]. Together with new experimental techniques for the synthesis
and characterization of new materials, the theoretical understand-
ing and modeling of their structure are essential to engineering
design. At atomic scale, the straightforward approach to simulate
the dynamics of a system is Molecular Dynamics (MD) [7]. How-
ever, this class of models cannot address pattern formation at
mesoscopic and higher space scales. Moreover, even at atomic
scale, diffusional processes rooting self-assembly are still beyond
reach for MD [8]. Alternatively, the Monte-Carlo (MC) approach is
applicable to describe the self-assembly kinetics at diffusion scale
[9], but the stochastic sampling in the MC dynamics requires the
time consuming generation of a Markov chain [10]. Because it is

naturally defined at the time scale of diffusion, the Phase-Field
(PF) approach is emerging as a powerful tool to study self-
assembly dynamics at mesoscopic scale, but also at atomic scale.
Indeed, atomic scale PF models have recently appeared, such as
the Phase-field Crystal (PFC) [11–13], and the Continuous Atomic
Density Functional (CADF) [14]. Notwithstanding, the constant
struggle for accelerated simulations on bigger spatial domains
requires the implementation of new fast and light algorithms, espe-
cially for PF models. The purpose of this work is to address the need
for a fast PF numerical method, prospecting the patterned struc-
tures emerging at the late stages of self-assembly kinetics.

The semi-implicit time integration of Eyre [15–18] was shown
to guarantee the unconditional gradient-stability of the numerical
solutions. This property allows to use high time steps, and reach
the late stage of the dynamics swiftly. Based on this general algo-
rithm, a non-linear convex splitting of the free energy functional
was proposed in [19,20], resulting in a second order of convergence.
However, this class of algorithms requires a linear algebraic solver.
In addition, the non-linear splitting is not always compatible with
the Fourier-spectral treatment of space discretization, usually used
to solve the PF equations. These two features induce an additional
computational load, which considerably reduce the efficiency of
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simulations [21]. This shortcoming reveals especially true for PFC
and CADF simulations, as it requires very large simulation boxes
(typically 2563 and bigger [22]). In this work, we propose an alter-
native strategy, by taking the seminal Semi-Implicit Fourier (SIF)
numerical scheme [23], as a starting point. Because it is fast, com-
putationally light, and easy to implement, this method has become
standard for PF simulations prospecting the steady states of
dynamical processes [24–26]. Notwithstanding, it is not uncondi-
tionally stable, and the time step is thus limited by the stability
of the scheme. In this context, the purpose of this study is to
demonstrate that the combination of the Fourier-spectral treat-
ment of space, with the time integration of Eyre, provides a simple
and powerful alternative to the SIF scheme for the fast prospecting
of various system dynamics. At the root of it, the unconditional sta-
bility of the scheme, which allows to decrease the simulation time,
by at least one order of magnitude, without weighing the algo-
rithm. Second, following the idea of Galenko et al. [27,28], this
study aims at generalizing this procedure to different PF equations,
in order to simulate a wide manifold of self-assembly dynamics.

In the present work, the Spectral-Eyre (SE) scheme, combining
the Fourier-spectral treatment of space, with the time integration
of Eyre, is thus reformulated for the general framework of self-
assembly kinetics. The SE scheme is proved to be numerically fast,
and computationally light. The versatility of the scheme is also
demonstrated, through its ready-to-use implementation in three
cases of phase field models of self-assembly dynamics. The first
example relates to the MCH equation for irradiation induced pat-
terned microstructure in binary alloys [29,30]. The second example
is the PFC method, developed by Elder et al. in [13], to simulate the
formation of periodic structures. Finally, particular emphasis is put
on the CADF method [14], which was alternatively elaborated to
simulate the self-assembly of complex crystal structures [31]. The
study is organized as follows. First, the general PF equation for
self-assembly kinetics is presented, and applied to the MCH, PFC,
and CADF models. Then, the sound mathematical basis of the SE
scheme established, and the correct parameter setting is demon-
strated. After that, the implementation of the SE scheme for the
MCH, PFC, and CADF models is written, and the computational
properties are numerically proved in two dimensions. In particular,
the computation time gain on the SIF scheme is demonstrated.
Examples of 2D simulations are then displayed, such as the simula-
tion of graphene monolayer, which is an active field of research, in
both experimental and modeling science [32]. Finally, the fast
three-dimensional simulation of the FCC structure assembly, and
the challenging simulation of grain boundaries between diamond
crystallites are presented.

2. The PF model for self-assembly kinetics

2.1. General formulation of the kinetic equation

The Phase-Field model has been extensively used to simulate
microstructure, and complex atomic structure formation, because
of its ability to reproduce a manifold of patterns, without any a pri-
ori assumptions. In this method, each phase, or domain in a peri-
odic structure, is characterized by a set of field variables
(compositions and/or order parameters). In this work, one scalar
field / is considered. The temporal evolution of the variable / is
governed by the Landau-Khalatnikov equation of motion [33],
which subjects the variations of the field, to the thermodynamic
driving force:

@/
@t

¼ M r/Lð/Þ
� �

: ð1Þ

Here, r/½�� is the functional derivative, and M is the Onsager kinetic
matrix. In this work, the phase-field variable / is conserved, andM is

the Laplacian operator D. In the most general case, the effective
energy functional Lð/Þ can be expressed as a sum of the local con-
tribution F, and the non-local contribution W:

Lð/ðx� x0ÞÞ � Fð/ðxÞÞ þWð/ðx� x0ÞÞ; ð2Þ
where x and x0 are space vectors, belonging to the cubic domain

X ¼ 0; L� ½d of edge length L, in dimension d ¼ 1;2;3. The first term
Fð/Þ sums all local contributions of the free energy density f ð/Þ. In
the formalism of Landau [34], the function f takes the form of a poly-
nomial of the variable /:

f ð/Þ ¼ ��/
2

2
þ /4

4
; Fð/Þ ¼

Z
X
f ð/Þdx: ð3Þ

For � > 0; f displays two wells of equal depth, thereby ensuring
the stability of two coexisting phases (/ < 0 and / > 0). The second
term Wð/Þ is the effective internal energy of the system. In the
Cahn-Hilliard (CH) equation [35], it can be related to the interfacial
energy between phases [36], the elastic energy of coherent inclu-
sions [37], and external forcings [38]. For the PFC and CADF models,
it can be associated with the interatomic interactions [39]. To
address the issue of self-assembly, Wð/Þ embodies both repulsive
and attractive interactions, whose interplay is at the root of pat-
terning [40]. In this work, a quadratic form, corresponding to a
two points correlation function is used for Wð/Þ:

Wð/Þ ¼ 1
2
ðw � /;/ÞL2 ; ð4Þ

where �; �ð ÞL2 is the scalar product on L2ðXÞ, of corresponding norm
�k k2. Consequently, the functional derivative of Wð/Þ is linear in

/ : r/Wð/Þ � w � /. We also require that the presence of the term
W in Eq. (1) is compatible with the gradient system framework [15]:

Wð/Þ ! þ1 () /k kh ! 1
9k0 2 R; such as Wð/Þ P k0

2 ;

(
ð5Þ

where uk kh ¼ uk k2 þ ruk k2 is the norm on the space H1ðXÞ of func-
tions u 2 L2ðXÞ, such that

R
X jruj2dx < 1, and

R
X udx ¼ �u. The strong

formulation of Eq. (1) with Neumann boundary (NB) conditions
follows:

@/
@t

¼ D f 0ð/Þ þw � /� �
; ð6Þ

for any smooth solution /, mapped to an initial condition /0. Note-
worthy, other boundary conditions can be applied, such as periodic
boundary conditions. However, this modifies slightly the Fourier-
spectral analysis, as mentioned in the following. The Eq. (6) satisfies
three central properties, on which the numerical scheme is built. For
a solution / of Eq. (6), the mass is conserved and the effective energy
is dissipated:

d
dt

Z
X
/dx

� �
¼ 0;

dLð/Þ
dt

ðtÞ 6 0: ð7Þ

Also, the Eq. (6) belongs to the framework of differential gradi-
ent systems [15]:

@/
@t ¼ �D �r/Lð/Þ

� �
Lð/Þ ! þ1 () /k kh ! 1
H/LðwÞ /

/k k2 ;
/
/k k2

� �
L2
P b; b 2 R:

8>><>>: ð8Þ

Here, H/LðwÞ is the Hessian function of L, given by
H/LðwÞ : /# f 00ðwÞ � /þw � /. This property stems from the com-
plete definition of Lð/Þ, (Eqs. (2)–(4)), and the property
lim�1f ¼ þ1 for � > 0:

H/LðwÞ/;/
� 	

L2 ¼ f 00ðwÞ/;/� 	
L2 þ 2Wð/Þ P ðk0 þmin

R
f 00Þ /k k22:
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