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a b s t r a c t

Considering the phonon-phonon interactions, the temperature-dependent phonon dispersion curves of
bcc and fcc W are derived at high pressures. Both the fcc and bcc phases are dynamically stable in a wide
range of pressures and temperatures. The bcc-fcc phase boundary is obtained by comparing the Gibbs
free energy in their dynamically stable regions and the bcc-fcc phase boundary is located above 1200
GPa in the temperature range 300–8000 K.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Extensive experimental [1–7] and theoretical [8–13] investiga-
tions have been performed for transition metals because of their
importance in condensed-matter physics, geophysics, and so on.
As for tungsten (W), the melting temperature obtained from the
shock-wave experiments [4] is extremely high, while the results
[5,6] obtained from the diamond anvil cell (DAC) measurements
are lower and increase only a few hundred Kelvin (K) over the pres-
sure range 0–100 GPa. An enormous discrepancy exists in extrapo-
lating the DAC experimental results of W to the shock melting
pressure [6,7]. The same problem also emerges in other transition
metals [6,7,14]. A possible explanation [6,7,10] is that a solid-solid
phase transition occurs at high pressures and high temperatures,
and this high-pressure and high-temperature phase may results
in a large slope of the melting curve.

Actually, at room temperature, it is known that bcc W is very
stable. The DAC experiment has determined the absence of the
room-temperature phase transitions for the bulk W up to 423
GPa [15]. Total energy calculations [16,17] indicate that bcc W is
stable to very high pressures and the fcc structure is a potential
high pressure phase. The dynamical stability of bcc and fcc W
has been studied in detail at high pressures [16], together with

the Bain’s transition paths between bcc and fcc W [16,17]. The
bcc phase will be dynamically stable up to 1200 GPa [16]. The fcc
phase is dynamically unstable at lower pressures and will be
dynamically stable at higher pressures [16]. However, the temper-
ature is not taken into account for the phonon calculations in Ref.
[16] and the dynamical stability of bcc and fcc W at high temper-
atures is unknown.

Anharmonic contributions to the free energy are very important
and will change the results from the quasi-harmonic approxima-
tion for the closely analogous element Mo [18,19]. If the anhar-
monic effect from the phonon-phonon interactions is taken into
account, fcc Mo will be the dynamically stable in a wide range of
pressures and temperatures, and the bcc-fcc phase boundary will
also change markedly compared with the bcc-fcc boundary derived
from the quasi-harmonic approximation [18]. The importance of
the anharmonic effect is also apparent in the bcc phases of the
group-IIIB (Sc, Y, La) and group-IVB (Ti, Zr, Hf) transition metals
[20–22]. However, in the case of W, whether the anharmonic effect
is of great importance remains to be demonstrated at high pres-
sures and high temperatures.

The self-consistent ab initio lattice dynamics (SCAILD) method
[20,21] includes the effect of phonon-phonon interactions and
can determine anharmonic phonon dispersion curves at high tem-
peratures. In this work, we perform the SCAILD calculations to
investigate the dynamical stability at high pressures and high tem-
peratures for bcc and fcc W.
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2. Computational details

The temperature-dependent phonon dispersion curves were
computed using the SCAILD method [20,21]. In this approach, the
displacements UR of the atoms located at equilibrium Bravais lat-
tice sites R, are regarded as superpositions of all the phonon modes
s with wave vectors q and the displacements are given by

UR ¼ 1ffiffiffiffi
N

p
X
q;s

AqseqseiqR ð1Þ

where N is the number of atoms in the supercell and eqs is the
eigenvector of the phonon mode s. The mode amplitude Aqs can
be derived from different phonon frequencies xqs through
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where n(x) = 1/(ex � 1) is the Planck function, M is the mass of
atoms, and T is the temperature of a system. The phonon
frequencies

xqs ¼ � 1
M

eqsFq

Aqs
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are obtained from the Fourier transform Fq of atomic forces. The
SCAILD method first needs to calculate a starting guess for phonon
dispersion curves using a standard supercell calculation. Then
because the displacements, forces and phonon frequencies are
interdependent, this method can calculate the temperature-
dependent phonon frequencies self-consistently according to Eqs.
(1)–(3). Because all the commensurate phonons simultaneously
present in the same force calculation, the interaction between dif-
ferent lattice vibrations is included. The phonon frequencies are
also renormalized by this interaction.

The Hellmann-Feynman forces required for the SCAILD calcula-
tions were computed using the VASP package [23]. The PBE form of
the generalized gradient approximation (GGA) was employed to
the exchange-correlation functional [24]. The projector augmented
wave (PAW) method was used to describe electron-ion interac-
tions, and 5p, 5d, and 6s states were treated as valence electrons.
The energy cutoff was set to 400 eV throughout. The total energy
was converged to 1 � 10�6 eV/atom. Our calculations used the 4
� 4 � 4 supercells of 64 atoms (3 � 3 � 3 C-centered k-point grid)
for the bcc and fcc phases. The electronic temperature was also
taken into account through the Fermi smearing width in the
SCAILD calculations. The vibrational free energy Fph(V, T) can be
calculated from the self-consistent phonon dispersion curves at
volume V and temperature T, through the following equation

FphðV ; TÞ ¼
Z 1

0
dxgðx;V ; TÞ �hx
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þ kBT lnð1� e��hx=kBTÞ
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where kB is the Boltzmann constant, ⁄ is the Plank constant divided
by 2p, x is the phonon frequency, and g(x, V, T) is the density of
states of the phonons. In the SCAILD calculations, the vibrational
free energy was converged to less than 1 meV/atom. In the total
energy calculations, the 25 � 25 � 25 C-centered k-point meshes
were employed for the primitive cells of bcc and fcc phases.

3. Results and discussion

The bcc and fcc phases of W are fully relaxed at zero pressure
and zero temperature. For the bcc W, the predicted equilibrium
volume is V0

bcc = 16.230 Å3/atom, which accords with the recently
experimental value of 15.855 Å3/atom [25]. At room temperature
(300 K), the phonon dispersion curves of the bcc phase at the equi-
librium volume V0

bcc are shown in Fig. 1. Our result agrees with the

experimental result [26], which implies the SCAILD method is reli-
able. The phonon dispersion curves of the bcc phase at volumes of
V0
bcc, 0.65V0

bcc and 0.44V0
bcc (approximately corresponding to pres-

sures of 0 GPa, 318 GPa and 1350 GPa) are shown in Fig. 2 at differ-
ent temperatures. At the volume of V0

bcc, the bcc phase is
dynamically stable up to the melting temperature of 3695 K [27]
and the frequencies in the HAP direction slightly soften with the
increase of temperature. As the pressure increases at a fixed tem-
perature T, the softening mode in the HAP direction becomes more
obvious. Under ultra-compression, the bcc phase will dynamically
unstable at lower temperatures, while it will be dynamically stable
again at higher temperatures. For example, we can find that the
phonon dispersion curves appear imaginary frequencies in the
N-U direction at the volume 0.44V0

bcc and the temperature 300 K,
and then the imaginary frequencies become real at higher
temperatures.

We also present the phonon dispersion curves of the fcc phase
in Fig. 3 at volumes of V0

fcc (16.519 Å3/atom), 0.65V0
fcc and 0.58V0

fcc

corresponding to approximate pressures of 0 GPa, 287 GPa and
457 GPa, respectively. Contrary to the bcc phase, the fcc phase is
dynamically unstable up to 3695 K at the equilibrium volume
V0
fcc, though the imaginary frequency regions decrease obviously

with the increase of temperature. As the pressure increases at a
fixed temperature, the imaginary frequency regions will decrease
in size. Noticeably, the fcc phase is dynamically stable at all tem-
peratures for the volume of 0.58V0

fcc. Under compression such as
the volume of 0.65V0

fcc, as the temperature increases, the imaginary
frequencies disappear around the gamma point and the fcc phase
become dynamically stable at high temperatures. Einarsdotter
et al. [16] reported that at �300 GPa and 0 K, there were large
number of imaginary frequencies in the phonon dispersion curves
of the fcc phase, but our calculations (see Fig. 4) indicate that at
�300 GPa and higher temperatures (T � 4000 K), the imaginary
frequencies disappear and the fcc phase becomes dynamically
stable. Thus, the anharmonic effect from the phonon-phonon inter-
actions is important and must be taken into account.

The dynamical stability of bcc and fcc phases are investigated in
a wide range of pressures and temperatures (Fig. 4). The SCAILD
calculations are performed at different volumes and temperatures.
The Helmholtz free energy F(V, T) of a system can be written as a
sum of three parts [21]:

FðV ; TÞ ¼ E0ðVÞ þ FelðV ; TÞ þ FphðV ; TÞ: ð5Þ
Here, E0(V) is the total energy at 0 K with the fixed ionic posi-

tions. The second part Fel(V, T) is the thermal free energy from
the electronic excitations and the last term Fph(V, T) is the vibra-
tional free energy obtained from Eq. (4). The sum of E0(V) and Fel(-
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Fig. 1. Experimental [26] (circle symbols) and calculated (solid lines) phonon
dispersion curves of bcc W at the volume V0

bcc and temperature 300 K.
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