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We present methods and results for the simulation of faceted and dendritic crystal growth. Using a ther-
modynamically realistic isothermal alloy model for AlSi we demonstrate, in confirmation of experimental
observations, a change in morphology from perfectly faceted hexagons at smaller undercooling to den-
dritic growth at larger undercoolings. We also demonstrate that there exists a cut off temperature which

separates the two distinct morphologies, and indeed hybrid morphologies. These results suggest that the
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mechanism for morphology variation observed experimentally primarily lies in anisotropic surface free
energy modelling, which we adopt in preference to kinetic anisotropy.

© 2017 Published by Elsevier B.V.

1. Introduction

During solidification close to equilibrium crystal morphologies
adopt the Wulff shape, which is itself a reflection of the underlying
crystallography. However, at large departures from equilibrium
alternate morphologies are often adopted. One manifestation of
this is that crystals that are faceted at equilibrium become progres-
sively less faceted and more dendritic in character with increasing
growth velocity. Such a range of transitions was elegantly demon-
strated by [1] in respect of Si crystals growing from an Al-Si melt
solidified on a chill plate, with the transition also having been
widely studied in the semiconductors Si [2,3] and Ge [4,5] together
with Si-Ge [1] mixtures. Where measurements have been made of
the growth velocity [2,5] the transition from faceted to dendritic
growth is usually accompanied by an abrupt increase in growth
velocity. In recent experimental work [6] found, in CugSns, there
to be a change from faceted rods to non-faceted dendrites as the
cooling rate was increased.

To date the modelling of two-phase crystal growth has concen-
trated on either continuous dendritic morphology or faceted
growth. Here we present an approach to modelling facets that also
allows for a transition to a continuous (dendritic) morphology
under large departures from equilibrium and also accommodates
the intermediate morphology of faceted dendrites. Hence, we clar-
ify that the main mechanism for morphology change is in fact
undercooling (and not cooling rate).

* Corresponding author.
E-mail address: p.c.bollada@leeds.ac.uk (P.C. Bollada).

https://doi.org/10.1016/j.commatsci.2017.12.007
0927-0256/© 2017 Published by Elsevier B.V.

In [1] solidified crystals on a chill plate are seen to exhibit a
range of morphologies. The observation is that of faceted crystals
forming from smooth nuclei at small undercoolings, near equilib-
rium, giving polyhedra. At greater undercooling dendritic instabil-
ity may set in before subsequently forming facets thereby giving
rise to a faceted dendritic morphology. Most phase field simula-
tions designed to simulate faceted growth only exhibit facets,
[8,10-14,18,19], and, of course, the vast majority of phase-field
simulations do not show facets at all.

The modelling of facets in phase field is done via a specification
of the surface energy, the mobility, or both. We focus on surface
energy anisotropy modelling. The link between the surface energy
anisotropy and the resulting morphology is discussed in [7]. Cru-
cially, though, the predicted morphology is only strictly valid at
small undercooling. The question to be asked is therefore: what
happens to the morphology of the solid as the undercooling in
increased? In [9] dendritic growth is observed for a pure metal
with four-fold symmetry, where, at the tip of the dendrite arms,
facets are exhibited. The difference between this and the present
work is that we simulate a given specific alloy (AlSi) using a full
thermodynamic description, and explore the dependency of mor-
phology on undercooling. We demonstrate that, indeed, facets
occur at small undercooling and dendritic growth patterns are
observed at high undercooling, with a continuous range of mor-
phologies in between. We model AlSi in two dimensions, with
the specification that hexagonal facets are to be formed at near
equilibrium. A comprehensive overview of modelling approaches
is given in [17], where in general anisotropy can be modelled in
both the interface and/or in the mobility. If the anisotropy is in
the mobility only, the effect vanishes (within phase-field at least)
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as V — 0, so this does not give faceted growth during equilibrium
solidification. As a minimum, using a capillary anisotropy is there-
fore a computational expedient to simulating the faceted to contin-
uous growth transition.

We apply the computational techniques detailed in [20].

2. Facets and anisotropy modelling

Within the phase field model the surface features are modelled
using the gradients of the phase, V¢ (the detailed phase model is
given in Section 3).

Much of the literature concerns 4-fold symmetric growth, so we
use this to illustrate the modelling. A 4-fold anisotropy used in the
literature to generate 4-fold dendrites is given by

A= %52[1 +€cos(40)]’Ve - V. M

which is controlled by a parameter, €, which when zero give isotro-
pic growth. This can also be written

1o,
A= 55 Y (2)
where, in general, for m-fold symmetry
p=[1+ €cos(m)||Ve|. 3)
y is also a function of the surface normal in the following sense
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and has the property y(om) = ap(n)’ for any function, . It is also
convenient to consider the function, #, related to y by y = |V ¢|. This
function has the property #(om) = 77(n). Fig. 1 plots 7 as a function of
0 in a polar plot, where we see that the circle deforms with increas-
ing € to a point where there are concave regions, here illustrated for
€ = 0.1. Setting the locus of the curve

X(0) = n(0)[cos 0, sin 0], (5)

a concave region occurs if

SO =0 (6)

for some 0, which gives the condition to avoid concavity as
n"(0) +n(0) > 0. For the case just considered this implies € < 1/15
to avoid concavity, and in general € < 1/(m? — 1) for m-fold sym-
metry. Another, more direct, way of illustrating the anisotropy func-
tion, y, is by way of a Frank diagram (or shape). Here we choose a
contour of y in the space [¢,, ¢,], see Fig. 2. The problem of concavity
in the anisotropy function is that the resulting crystal shape can
develop discontinuities in these regions, which in turn presents
numerical difficulties.
By writing
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yx:a¢x7 ))y78¢y7 (7)

both of which are functions of ¢, and ¢,, a 2D space curve, W(t),
can be produced by setting [¢, = cos(t), ¢, = sin(t)] in functions 7y,
and y, to give W(t) = [y,(t),7,(t)]. This is shown in Fig. 3 for the
four-fold symmetry case, where cusps, known as “ears”, form on
the € =0.1 > 1/15 curve, which correspond to the concavity in
the Frank diagram (Fig. 2). Formally the Wulff shape is the shape
enclosed by W(t) (without the ears). The 4-fold anisotropy dis-
cussed so far cannot produce facets, rather, as the parameter €
increases a sharp corner is produced on an otherwise rounded

! Or p(ave) = ay (V).
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Fig. 1. Polar plot of the function, # = 1 + € cos(40), with anisotropy varying from
zero (isotropic - red) to extreme anisotropy (blue). The blue curve exhibits concave
regions. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 2. The Frank diagram of the 4-fold anisotropy function is a contour of y in the
space [¢y, ¢,]. Each contour is identical in shape and is conical for € = 0.
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shape (a bulging square). So we seek other forms that, ideally,
have rounded corners but perfectly flat sides. A number of
approaches to modelling facets in crystal growth are found in
the literature:
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