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a b s t r a c t

Three-dimensional rods form an integral part of the microstructure in materials with high applicability
like eutectoid composites. Morphological evolution of the these rods, governed by its inherent difference
in the curvature, is analysed by employing a thermodynamically consistent phase-field model in this
work. Similar to the study of 2D plate-like structures, an analytical approach is extended to comprehend
the kinetics of this volume-diffusion governed transformation. Despite the agreement of the theoretical
treatment with the 2D simulations, the onset of contra-diffusion, a behaviour which has been shown to
be absent in two-dimension, introduces a progressive deviation from the expected kinetics. However, a
simplified relation between the time-taken for the spheroidization s

s0
� �

and the aspect-ratio of the
‘capped’ rod w

tp

� �
is attained from the outcomes of the phase-field simulation, which is expressed as

s
s0 � 5:8 w

tp

� �2
. The phase-field study is further extended to analytically ill-posed but physically observed

‘uncapped’ and ‘faceted’ rods, to understand the mechanism of its transformation and subsequently, ana-
lytical expressions are obtained to predict the transformation kinetics of these rods. Moreover, it is
uncovered that irrespective of the initial configuration of the rod (faceted or otherwise), capped rods form
an intrinsic part of the morphological evolution.
In complete agreement with the experimental observations, present study determines the critical

aspect-ratio w
tp
¼ 8

� �
, above which the spheroidization involves the breaking-up of the rods (‘ovulation’).

The formation of ‘satellite’ particle(s) which introduces coarsening into the morphological evolution of
the rods is also analysed. Furthermore, it is identified that the distance between the spheroids (ds), after
ovulation and coarsening, follows a definite relation proportional to the height of the rod (w), given by
ds � 0:0143w1:71.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Phase transformations influenced by the interplay of several
thermodynamical parameters yield interesting microstructures
[1]. These microstructures are meticulously engineered by suitable
solidification and=or heat-treatment techniques to render desired
properties. Eutectic composites are one such category of materials
with a unique microstructure which are frequently sought for its
applicability in robust environments [2]. A conventional eutectic
composite comprises of a ductile matrix reinforced with
precipitate-rods. This microstructure is generally achieved, either,
by solidification [3,4] or independently, through fiber-
reinforcement [5]. The geometrical feature of the rods, which gov-
erns the strengthening of the matrix, is significantly influenced by

the manufacturing technique and also by the crystallographic
orientation-relation between the constituent phases [6,7].

Despite the potential of these eutectic composites, stability of
the rods at high temperature poses an imminent threat to its appli-
cability. Owing to its morphology, under appropriate thermody-
namical conditions, these rods undergo transformation which
ultimately leads to their dissociation [8]. Although favoured in
few instances due to the change in properties that accompany
[9–11], these morphological changes are ill-preferred during appli-
cations [12,13]. Thus, both theoretical [14–16] and experimental
[17–19] attempts are made to understand the mechanisms and
kinetics of this transformation. Theoretically, these rods are cate-
gorized as finite [20,15] and infinite [21–23] to adopt suitable ana-
lytical approach. Depending on the physical system considered,
pertinence of this consideration varies. Inspired by the works of
Plateau [24] and Rayleigh [25], Nichols and Mullins postulated a
numerical treatment [26], through the delineation of the thermo-
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dynamical principles (Gibbs-Thomson effect) involved, which pre-
dicts the stability of the rods under an imposed perturbation [27].
This approach has been enhanced by averting the mathematical
delineation and analysing the transformation in accordance with
the distribution of the chemical-potential [28,14]. Phase-field stud-
ies have employed both these approaches separately to provide a
significant understanding on the factors influencing the stability
of the rods [29,30]. Regardless of these advancements, few
assumptions and un-addressed aspects mitigate the reach of the
current understanding to the physical systems [31]. Thus, in this
work, an attempt is made to bridge some of these gaps by quanti-
tatively analysing the volume-diffusion governed shape-
instabilities in finite-rods using thermodynamically-consistent
phase-field model [32,33]. Since the phase-field parameters and
the model remain same for both parts of the current analysis, read-
ers are directed to part-I for an understanding of the model and its
thermodynamical coherence.

2. Spheroidization of 3-dimensional rods

2.1. Analytical prediction of spheroidization kinetics in ‘capped’ rods
and deviation introduced by ‘contra-diffusion’

A cementite (h) rod with circular cross-section and
hemispherically-capped longitudinal ends, as shown in Fig. 1 at
an initial time step s ¼ 0, is introduced into ferrite matrix (a).
For all the simulations in the present work, the diameter of the
rod tp is retained at 0:012 lm, while its length w is appropriately
varied to achieve the desired aspect-ratio. Any phase transforma-
tion amongst these two solid phases a and h is impeded by assign-
ing equilibrium composition and subsequently, conserving the
volume of the evolving phase. Furthermore, the physical values
corresponding to the parameters, like diffusivity (D),

molar-volume (X) and interfacial-energy (cs), that govern the
transformation are collectively presented in Table 1. The ‘capped’
rod is allowed to evolve, driven entirely by the inherent difference
in the curvature, without the influx of any external perturbations.
In accordance with Ref. [35], the driving-force at the beginning of
the transformation, C0 is written as

C0

s0
¼ 4pntp

ð2wþ ptp � 4rcÞ ; ð1Þ

where s0 ¼ DX2cheqcs
jT ;w and tp are the geometrical features of the rod

as depicted in Fig. 1. n is a constant that accounts for the number
of diffusion paths while j is the Boltzmann’s constant. cheq refers
to the equilibrium composition of evolving phase (cementite)
obtained from CALPHAD and temperature, T is considered to be
973 K. rc is the radius of the resulting sphere which through the

constraint of volume-preservation is rc ¼ t2p
16 ð2tp þ 3wÞ
� �1

3
.

As shown in Fig. 1, the rod of aspect-ratio 6, assumes an ellip-
soidal shape with a major-axis 2a and equal minor-axes 2b at the

midpoint of the transformation s1
2

� �
. For a 3-dimensional ellipsoid,

the principal radii of curvature reads [36,37]

R1 ¼ 1

H �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 � K

p ð2Þ

R2 ¼ 1

H þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 � K

p ð3Þ

where H is the mean curvature and is expressed as

H ¼
ab2 3a2 þ 5b2 þ ða2 � b2Þðcos 2h� 2 cos 2/ sin2 hÞ
� �

8 a2b2 cos2 hþ b2 sin2 hðb2 cos2 /þ a2 sin2 /Þ
� �3

2
ð4Þ

Fig. 1. Morphology of the 3D capped rod at the beginning (s0), midpoint s1
2

� �
and end (s1) of the transformation, along with its corresponding cross-section. The cross-section

of the shared cylinder is also isolated and depicted. The geometrical notations involved are declared.
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