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a b s t r a c t

The design of new and improved materials for different applications of interest is boosted by combining
computations or experiments with machine learning techniques. Materials scientists seek to use learning
algorithms that can easily and efficiently be applied to their data in order to obtain quantitative property
prediction models. Here, we utilize a first principles generated dataset of the electronic and dielectric
properties of a chemical space of polymers to test different kinds of regression algorithms used by the
machine learning community today. We explore several possibilities for the hyper-parameters that go
into such learning schemes, and establish optimal strategies and parameters for high-fidelity polymer
dielectrics property prediction models.

Published by Elsevier B.V.

1. Introduction

Materials science has greatly benefited in recent times from the
application of machine learning techniques to available or newly
generated materials data [1–7]. Whereas accurate computations
and careful experimental measurements are the standard treat-
ments for new materials discovery, machine learning can acceler-
ate the process significantly, and open up opportunities for
exploring complex chemical spaces efficiently. Given any robust
dataset of materials properties, learning approaches involve mak-
ing correlations and mappings between crucial but easily accessi-
ble features of materials on the one hand, and the properties of
interest on the other. Relationships formed between features and
properties can then be exploited for making qualitative, semi-
quantitative or quantitative predictions on unseen materials.

In a recent study of designing dielectric polymers for energy
storage applications [1,8], we applied machine learning techniques
on computational data to develop property prediction models.
With respect to high energy density capactitors, polymers suitable
to be used as dielectrics should show a high dielectric constant and
a large band gap, amongst other crucial features [9,10]. We used
density functional theory (DFT) computations to generate dielec-
tric constant (divided into two components, the electronic and
the ionic contributions) and band gap data for a selected chemical
space of organic polymers. These polymers were built by simple

linear combinations of chemical units opted out of a pool of 7 basic
blocks: CH2, NH, CO, C6H4, C4H2S, CS, and O. For each polymer, DFT
helps determine the ground state crystalline arrangement, for
which the properties are then computed using known formalisms.
Validation of the computed properties against experimental
measurements [9] for known polymers makes this a reliable
methodology.

Once the property data was generated for 284 polymers (all this
data is presented in Refs. [1,8]), it was possible to perform machine
learning via an intermediate polymer fingerprinting step. The fin-
gerprint is mapped to the properties—the band gap (in eV), the
electronic dielectric constant, and the ionic dielectric constant—
to develop an efficient prediction model, that will give as output
the properties of any new polymer by converting it into its finger-
print. Once a reasonably accurate prediction model is trained, one
can instantly predict the dielectric constants and band gaps of any
new polymers that were not considered during computations, thus
providing an accelerated materials design route.

Apart from the availability of robust, uniformly generated data,
there are a number of other essential factors in the machine learn-
ing process that need to be taken care of for optimal learning.
These include defining a suitable fingerprint, choosing a learning
algorithm, and determining the necessary subset of the data that
is needed for training the learning model [5]. The fingerprints we
chose and tested in Ref. [1] were chemo-structural in nature, that
is, they quantified the types and combinations of different con-
stituent blocks in the polymer. Three fingerprints were used: a
count of the different types of building blocks in the polymer,
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called fingerprint MI , a count of the types of block pairs (fingerprint
MII), and a count of the types of block triplets (fingerprint MIII). The
fingerprints were normalized and generalized for any number of
blocks in the polymer repeat unit, and used to train a regression
model for the three properties of interest.

Whereas all three fingerprints were tested in Ref. [1], the learn-
ing algorithm used was Kernel Ridge Regression (KRR) [11]—a non-
linear regression technique that works on the principle of
similarity. Euclidean distances between fingerprints were used to
quantify the similarity. A distance kernel goes into the definition
of the property here, for which a Gaussian kernel was used. Around
90% of the entire polymer dataset was used to train the KRR model,
and predictions were made on the remaining points as a test of the
performances. Mean absolute errors (MAE) in prediction of less
than 10% with respect to the DFT values were seen, which is satis-
factory for a statistical model and the best performance that could
be obtained using the current optimal learning parameters. The
optimal fingerprint used here was MIII , with MII and MI discarded
owing to larger prediction errors.

Although we obtained learning models as described above to
predict polymer properties with reasonable accuracies, a detailed
study of all the different possible machine learning (or regression)
parameters is due. Such a study can be very valuable in terms of
truly testing the capabilities of our machine learning philosophy
for the given polymer dataset, and indeed, improving the perfor-
mances. In Table 1, we try to capture all these different parameters,
mentioning the specific choices that we used in Ref. [1] as well as
the other possible options explored here. Whereas the fingerprint
choices were already rigorously tested, each of the other parame-
ters provide room for further testing, and thus possible perfor-
mance improvement.

In this paper, we take the same polymer dataset and analyze the
machine learning prediction performances for different regression
algorithms, different distance kernel choices, different training set
sizes and different error definitions. Possible alternative algorithms
to KRR include, but are not limited to: Linear Regression (LR), Sup-
port Vector Regression (SVR), Gaussian Process Regression (GPR)
and SVR with AdaBoost. Whereas we used KRR with a Gaussian
kernel in Ref. [1], Linear, Laplacian or Polynomial kernels can be
used as alternatives in any kernel-based regression algorithm. Fur-
ther, the training set size can be varied systematically to study the
prediction errors. The prediction errors can be quantified in differ-
ent ways, such as mean absolute error (MAE), root mean square
error (RMSE) and error based on the coefficient of determination
(1 � R2).

In the following sections, we present our results and discussions
based on the analysis of all these machine learning parameters. We
attempt to compare them critically with each other, and comment
on the best possible combination of parameters that must be used
given the present polymer dataset.

2. Kernel Ridge Regression (KRR)

In this section, we delve deeper into KRR, the algorithm that
formed the basis of all machine learning prediction models in
Ref. [1]. KRR is a similarity based regression algorithm that inher-
ently takes the nonlinearity of the system into account. The ‘simi-
larity’ between any two data points is defined using some standard
mathematical measure of distance, such as a Euclidean distance.
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The smaller (larger) is this distance, the more similar (dissimilar)
the two polymers are. Now, KRR involves defining the property of
interest (the output) as a function of such a distance measure, so
that the property of any polymer can be estimated by taking its dis-
tances from all the other polymers. Mathematically, the predicted
property of polymer j, denoted by PðjÞ, will be defined as follows:

PpredðjÞ ¼
Xn
i¼1

aiKðx!i; x
!
jÞ: ð2Þ

The summation is performed over the entire training set size n, and

Kðx!i; x
!
jÞ is the kernel function that is defined in terms of dðx!i; x

!
jÞ, the

distance between polymer i (in the training set) and polymer j. The
purpose of the kernel function is to transform the points (the poly-
mers) from the fingerprint space to a higher dimensional space,
thus making nonlinear mapping possible [12]. The two crucial
parameters that need to be optimized here are the kernel coeffi-
cients ai and the parameters that go into the kernel definition—such
as the Gaussian width for a Gaussian kernel. Training of a KRR
model essentially involves an iterative minimization of prediction
errors leading to the optimal parameter choices.

In practice, as mentioned in the Introduction, the total available
dataset is divided into two parts—the training dataset and the test
dataset. When training the model using the former, an important
step that must be carried out is cross-validation, wherein the train-
ing set itself is divided into a number of subsets. One of the subsets
is used as a temporary test set while training is performed on the
remaining subsets, and this procedure is repeated for each of the
subsets. The optimal regression parameters are obtained corre-
sponding to minimum average prediction errors on the temporary
test sets; subsequently, the error computed over the entire training
set with these parameters is referred to as the ‘cross-validation
error’, or sometimes the cross-validated ‘training error’. The pur-
pose of cross-validation is to avoid overfitting in the data and to
make the model more generalizable—that is, to ensure that the
model predictions would work reasonably for points outside the
training dataset.

Mathematically, the training process involves a minimization of
the following expression:

argmin
a1 ;...;an

Xn
i¼1

ðPpredðiÞ � PactualðiÞÞ2 þ k
Xn
i¼1

kaik22: ð3Þ

where PpredðiÞ is the KRR model predicted property value of polymer
i as defined in Eq. (2) and PactualðiÞ is its actual property value;
ðPpredðiÞ � PactualðiÞÞ is thus a measure of the prediction error.
However, the second term in the expression involves the regulariza-
tion parameter k. Regularization [2] is an important step that is
again aimed at preventing overfitting, and involves adding extra

Table 1
A comparison of various choices of machine learning parameters used in Ref. [1] and
explored here. The acronyms used stand for: Kernel Ridge Regression (KRR), Support
Vector Regression (SVR), Mean Absolute Error (MAE), Root Mean Square Error (RMSE)
and goodness of fit (R2).

Machine learning
parameters

Choices used in
Ref. [1]

Choices explored here

Fingerprint MI , MII , MIII MIII

Regression algorithm KRR KRR, SVR, AdaBoost
Type of kernel Gaussian Gaussian, Laplacian, linear,

polynomial
Training set size 90% of Data Learning curves
Error definition MAE RMSE, 1 � R2
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