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a b s t r a c t

Fatigue stress concentration factor (FSCF) plays a vital role in studying the limitation of material fatigue
resistance. Theoretically, FSCF not only reflects the level of fatigue stress concentration but also indicates
the notch sensitive degree. In this work, a novel and efficient numerical model is presented for predicting
FSCF, which exploits an emergent learning technique, i.e., Extreme Learning Machine (ELM). Specifically,
we adopt seven parameters (i.e., tensile strength, yield strength, fatigue strength, theoretical stress con-
centration factor, notch root radius, samples size and notch fatigue limit) as the inputs, and the corre-
sponding FSCF value is used as the output. With the randomly generated hidden neuron parameters,
the ELM-based predictor can be fast trained. Besides, a pairwise metric constraint is introduced in the
presented model, which can elevate the forecasting accuracy. A series of cross validation experiments
demonstrate that the proposed FSCF predictor performs favorably against the existing empirical formulas
and other learning based methods.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Fatigue property is a considerable issue for material designing
[1], and fatigue is also one of the chief culprits which result in
the part failure of some equipments (such as large-scale bridge,
astronautics devices, conveying machinery, etc.). The statistical
results reveal that most of mechanical fracture accidents are
caused by fatigue failure. Therefore, fatigue analysis plays an
important role, especially in designing the equipment structure
under alternating stress. As the limitation of material fatigue resis-
tance, fatigue stress concentration factor (FSCF) not only manifests
the degree of fatigue stress concentration but also reflects the
notch sensitive level [2].

So far, most of the existing estimators for FSCF are some empir-
ical formulas, which are based on the experimental research. In
addition, these empirical methods often pay more attention to
some specific conditions (such as material types, material strength
limit, notch radius, etc.).

Neuber [3] considers that the notch fatigue limit is under the
control of notch root radius, and thus, the FSCF can be computed
as follows

k ¼ 1þ Kt � 1
1þ ffiffiffiffiffiffiffiffiffi

a=q
p ð1Þ

here k is the estimated FSCF, Kt is the theoretical stress concentra-
tion factor, q is the size of notch root radius, and a is the Neuber
length parameter.

Similarly, Peterson [4] holds the opinion that if the material
fatigue failure happens, the corresponding surface stress must be
larger than its fatigue limit. Hence, the FSCF value of material
can be estimated as follows

k ¼ 1þ Kt � 1
1þ b=q

ð2Þ

here b is the Peterson length parameter.
In [5], the relationship between the FSCF value and the strain

concentration factor has been further studied. According to their
research, the materials can be divided into high-notch sensitive
type and low-notch sensitive one. Therefore, the resultant FSCF
predictor will have a piecewise expression.

Now it can be seen that the empirical formulas mentioned
above are generally based on some priori hypotheses. However,
in principle, the FSCF value is affected by the comprehensive fac-
tors of materials [2]. These empirical formulas may only explain
the distribution of FSCF value in some cases, so they can not always
perform well in the predicting task of FSCF.
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Recently, there emerge some learning based predictors [6–12].
Compared with the empirical formulas, the learning based predic-
tors can fully utilize the hidden relationships between the feature
representations of material, and finally find what is the best-fitting
output with a certain amount of training examples.

Hou et al. [6] apply the support vector machine (SVM) into the
prediction of FSCF. This SVM based predictor achieves better per-
formance than Neuber [3] and Peterson [4] formulas, which vali-
dates the potentiality of machine learning methods. However,
the training of SVM needs to solve a quadratic programming (QP)
problem, which may result in high computation.

During the recent decade, artificial neural networks (ANN) has
been widely used in the material design field [7,12,13]. In [7],
Restrepo et al. advocated a back propagation neural network model
to predict the grain boundary energy. Similarly, an implementation
of ANN model in the fracture energy prediction for polymer
nanocomposites has been presented in [8]. However, it is well
known that the parameters tuning of ANN is a complex and
time-consuming process, which may hinder its practical use in
the material designing.

In this paper, we attempt to propose a new and efficient pre-
dicting model for FSCF, which takes advantage of the excellent
learning capability of an emergent learning technique, i.e., Extreme
Learning Machine (ELM). The ELM proposed by Huang et al. [14,15]
is a novel machine learning framework. Compared with traditional
learning methods (ANN or SVM), the hidden node parameters of
ELM are randomly generated and it only computes the output
weights among hidden layers and the output layer. Experiments
demonstrate that ELM not only has a much faster learning speed
but also obtains a better generalization in regression or classifica-
tion applications [15]. Inspired by the success of ELM in related
fields (e.g., fault diagnosis [16], feature learning [17], discharge
forecasting [18], etc.), we apply it into the FSCF prediction, and
try to achieve better forecasting in terms of accuracy and effi-
ciency. The main contributions are summarized as follows.

(1) As far as we know, it is the first time that the ELM technique
is utilized in the material designing, especially for the FSCF
prediction. According to the ELM theories [14], ELM based
predictor with random hidden parameters (with almost
any nonlinear piecewise activation function) has the univer-
sal approximation capability. That is, unlike the ANN based
FSCF predictors, where the hidden neuron parameters need
to be iteratively fine-tuned, the proposed FSCF predicting
method can provide a simple but effective estimating
solution.

(2) A pairwise metric constraint is exploited in the ELM training.
Specifically, if two kinds of materials have different FSCF val-
ues, they will exhibit differently in the ELM-based regression
framework, and vice versa. Thus, the proposed predictor can
utilize the mutual relationship within the two kinds of mate-
rials, and tends to achieve a better forecasting performance.

(3) The incremental updating equation of proposed FSCF predic-
tor has been derived, which makes it very flexible to esti-
mate the FSCF value of material with the new available
training instances.

2. Preliminary knowledge

To facilitate the understanding of the proposed predicting
model in the following sections, we briefly review the related the-
ories/concepts of ELM. For a more detailed discussion and analysis,
we refer the readers to [14,15,19–21]. It should be noted that the
differences and relationships between ELM and other earlier works
have been intensively analyzed in [22].

Huang et al. [14] originally proposed the ELM for generalized
single hidden layer feed-forward neural networks (SLFNs), and
recently extended it to the multi-layer case [23]. Suppose that
SLFNs with L hidden nodes (see Fig. 1) are represented as

f LðxÞ ¼
XL

j¼1

Gðwj; bj;xÞbj ¼
XL

j¼1

hjðxÞbj ð3Þ

where wj is the input weight connecting the input layer to the j-th
hidden node, and bj is the bias of j-th hidden node; Gð�Þ is the acti-
vation function; bj is the output weight linking the j-th hidden node
and the outputs; hjð�Þ is the output vector of j-th hidden node.

Unlike the traditional understanding of neural networks, ELM
theories [14] show that the hidden neurons need not to be
adjusted. The corresponding implementation is random hidden
neuron, and its parameters, i.e., (w; b) in the activation function
Gðw; b; xÞ, are randomly generated based on a continuous probabil-
ity distribution. In addition, Huang et al. further proved that ELM
satisfies the universal approximation capability:

Theorem 1 (Universal approximation capability [20]). Given any
bounded nonconstant piecewise continuous function as the activation
function, if the SLFNs can approximate any target function f ðxÞ via

tuning the parameters of hidden neurons, the sequence fhjðxÞgLj¼1

could be randomly generated based on any continuous sampling
distribution, and with appropriate output weights, the

limL!1
PL

j¼1hjðxÞbj � f ðxÞ
��� ��� ¼ 0 holds with probability one.

The Eq. (3) can be rewritten as f LðxÞ ¼
PL

j¼1hjðxÞbj ¼ hðxÞb.
Here, b ¼ ½b1; . . . ; bL�T is the matrix of output weights, and
hðxÞ ¼ ½h1ðxÞ; . . . ;hLðxÞ� is the row vector representing the outputs
of L hidden nodes with respect to the input x. With the randomly
generated hidden neuron parameters, hðxÞ is known to users. Thus,
the ELM output function Eq. (3) becomes linear, and only the out-
put weights b is unknown.

Given a training data set fX;Tg ¼ fxi; tigNi¼1;x
i 2 Rd is the i-th

training data vector, and ti 2 Rm represents the corresponding
label. The above linear equations can be written in the matrix form

Hb ¼ T ð4Þ
where H is the hidden layer output matrix (randomized matrix).

H ¼
hðx1Þ

..

.

hðxNÞ

2
664

3
775 ¼

h1ðx1Þ � � � hLðx1Þ
..
. . .

. ..
.

h1ðxNÞ � � � hLðxNÞ

2
664

3
775 ð5Þ

Fig. 1. Typical structure of an extreme learning machine framework.
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