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a b s t r a c t

The main focus of this paper is a nonparametric filtering technique for the estimation of interface geom-
etry in bulk materials obtainable from modern imaging measurements. The filtering methodology relies
on an assumed hierarchy of topological features present in a typical interface network, such as foam
interfaces and grain boundary networks in polycrystalline materials. Each type of topological feature is
treated in order of rank in the hierarchy, with the lower-level feature being filtered subject to the posi-
tional constraints imposed by the higher-level features. Such a scheme is an alternative to existing sur-
face smoothing/estimation techniques in microstructural materials science, in which the explicit
treatment of different elements of the network topology is absent, or at best arbitrarily parameterized.
We describe the ramifications of this technique in the usual microstructural applications in which the
computation of important physical quantities is predicated on the precise estimation of the interface fea-
tures. As an additional application, we describe a novel front-tracking algorithm for quantifying the
transport of such interfaces.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

The morphology of surfaces and interfaces has garnered great
interest in many fields of scientific and engineering research. Such
studies have implications in applied physics, materials science,
biology, pharmacology, chemical engineering and computer vision
[1–3]. A vast part of this research is predicated on the proper imag-
ing of interfaces in the medium of interest. Interfacial networks are
composed of two-dimensional, possibly curved interfaces that sep-
arate two distinct regions of homogeneous matter, such as gas in
bubble foams, or phases or crystalline orientations in solids. We
use in this paper language relevant to interfaces in polycrystalline
materials but the methods described are equally applicable in
other fields by straightforward adaptation of the terminology.
The three dimensional entities with more or less uniform crys-
talline characteristics henceforth will be referred to as ‘grains’.

A particular type of grain boundary can be specified by five
parameters on the mesoscale where ‘meso-’ refers to a length scale
that is large compared to interatomic distances but small com-
pared to a typical grain size. Among the several possible parame-
terizations; we choose the set of three specifying the relative

crystal orientations of the grains, and two specifying the local nor-
mal direction relative to the crystal axes in one of the grains. The
normal direction in the other crystal frame can be computed from
these five parameters. This parameterization ignores a microscopic
relative translation on the atomic scale and thereby atomic-level
faceting of the interface, a feature addressed explicitly in molecular
statics and dynamics simulations. The set of these five parameters
is said to specify the grain boundary character [4–7]. Note that the
character between two grains can vary over the two-dimensional
boundary between them because, while the misorientation is fixed,
the local normal typically varies significantly over a curved grain
surface. Similar characterizations can be made for triple lines
(two misorientations and a tangent line) and quad points (three
misorientations). Finally, we note that crystal symmetry is typi-
cally exploited to reduce these specifications to unique ‘fundamen-
tal zones’ that span physically distinct ranges of orientations or
misorientations.

Whether from a basic or applied science viewpoint, the impor-
tance of characterizing grain boundaries in this manner cannot be
overstated. In polycrystalline materials, the local interfacial energy
density and mobility are known to be sensitive to the five grain
boundary parameters at each location [8,9,7,10]. It also informs
applications like grain boundary engineering whose eventual goal
is to precisely manipulate bulk material properties through the
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tuning of the grain boundary character distributions [11,12,4,13].
Further, it is well-known that the topological elements of a grain
boundary network like triple junctions and quad points are hot-
beds of activity with respect to precipitate diffusion [14–16] and
strain accumulation [17,18]. Real grain boundary networks are
usually the starting point for atomistic and continuum simulations
of microstructure evolution, the physics of which is most difficult
to model at triple lines and quad points.

All these applications are predicated upon measurements of the
various topological features of a grain boundary network, which
are inevitably subject to noise, whether through experimental res-
olution or image gridding. Given the generally accepted assump-
tion of mesoscopically smooth interfaces, this necessitates the
use of a smoothing estimator prior to any further analysis. Owing
to the diverse roles of topological elements such as triple lines
and quad points in microstructure phenomenology, an important
motivation for this novel filtering technique and other recent ones
[19] is to give them their due importance through explicit
treatment.

Other factors motivating this work are:

� Unlike voxelized images of most everyday objects, there exists
no general intuition for the shape of a grain in a sample, and
therefore a grain boundary. In the former case, iterative
smoothing algorithms such as Laplace and Taubin smoothing
[20] yield an acceptable result that is partially helped along
by the user’s advance knowledge of the object in question.
However these methods can suffer from under- or over-
smoothing if the number of iterations or step size are not cho-
sen properly.
� Explicit modeling techniques [21] more often than not belie the
sheer variety in the observed structure of grain boundaries and
network topologies.
� Existing nonparametric techniques [22] require the use of a
smoothing window of a user-defined size.

The methodology described here internally optimizes a com-
promise between fidelity to the input data points and a con-
strained Laplacian smoothing. An objective function is minimized
with respect to this compromise. The algorithm requires no user
input in terms of filter parameters, only that the connectivity of
the nodes be specified in advance, in the form of a graph. We dis-
tinguish the type of kernel resulting from graph-connectedness to
a given node from a fixed-size window centered on that node since
the former, which we rely upon, does not take into consideration
the physical distance between neighboring nodes, and only keeps
track of the connectivity.

While the grains in polycrystals can take on essentially arbitrary
shapes, the topological features typically encountered, and which
are explicitly dealt with here, can be demonstrated with children’s
(or adult’s) building blocks. Place two, say, cubic blocks (grains)
together on a surface with edges aligned (blocks 1 and 2). The
two blocks meet at a two dimensional interface (grain boundary
1-2). Now place a third block on the same surface so that it forms
boundaries with both blocks 1 and 2 (boundaries 1-3 and 2-3).
These boundaries meet at triple line 1-2-3. Now, place block 4 on
top of these three so as to form boundaries with all three below
(boundaries 1-4, 2-4, and 3-4). One now has new triple lines 1-2-
4, 1-3-4, and 2-3-4. Furthermore, triple line 1-2-3 now terminates
at a quadruple point, 1-2-3-4, where all four grains meet. Unless
one makes special arrangements to again align edges, these are
the topological features that will characterize an extended group
of similarly stacked blocks.

In this paper, all line junctions of interfaces in a network are
referred to by the generic term ‘triple line’ in allusion to the fact
that energetically stable junctions in 3D are shared between

exactly three interfaces. The incidental existence of a ‘n-tuple line’
in a polycrystalline material where n > 3 interfaces intersect is
known to be energetically unstable, forcing the interface topology
to deform to a lower energy configuration [23,24]. Likewise, a node
of termination of n0 such triple lines is referred to as a ‘quad point’
irrespective of the value of n0, alluding to the fact that n0 ¼ 4 is the
physically stable configuration in bulk materials. The mathemati-
cal machinery developed in this paper is as appropriate for con-
trived interface networks that deviate from this topological rule
as for digital images of real bulk microstructure, in which these
deviations are almost never observed.

We first describe the topological hierarchy in general terms
and then address the interface estimation procedure, which is a
modification of Laplacian smoothing of a set of meshed surface
points. This is followed by application to pixelated versions of
easily parameterized geometric primitives, in particular circles,
spheres and cylinders. Post-smoothing errors are quantified in
terms of estimated sizes of these primitives as well as estimated
normals for specific geometries. We then address specific cases of
interest in mesoscale materials science: two- and three-
dimensional grain boundary networks. The former finds relevance
in the study of thin films and the latter in that of bulk material
behavior (most prominently in the computation of grain bound-
ary character distribution plots, a common characterization of
materials microstructure). We demonstrate how the user is freed
from the largely intuitive choices of smoothing parameters that is
characteristic of iterative or windowed techniques. We then
describe in some detail the applicability to finite element meth-
ods in materials science as well as interface velocity estimation,
which is made possible with data obtained from modern non-
destructive imaging techniques. A new nonparametric algorithm
to achieve the latter is described.

2. General formalism

Consider a set of N noisy sample points X ¼ fx1; x2; . . . ; xNg in
D-dimensional Cartesian coordinates that sample an imaged grain
boundary. A subset XS � X of these points is tagged as a ‘perime-
ter’ that samples the edges of the grain boundary feature, with
the same grid resolution as the interior. For example, in three
dimensions, these points could represent a two-dimensional
boundary including all edge points, or a one-dimensional triple line
with its terminating quad points. We also specify a connectivity for
every point in X, described by a graph Laplacian matrix Lð0Þ:

Lð0Þij ¼
NðiÞ If i ¼ j

�Iðj; iÞ if i– j

�
ð1Þ

where NðiÞ is the number of points connected to xi and Iðj; iÞ is an
indicator function that is 1 if point j is connected to point i and 0
otherwise. We require that all xi 2 XS remain constrained to their
initial positions while the xi 2 X�XS are smoothed, all the while
adhering to the same node connectivity. We denote this smoothing
operation by SMOOTHðX;XSÞ.

As a general rule, we enter points xi into our hierarchy such that
all xi 2 XS are at one level above all xi 2 X�XS. Notationally the
hierarchy level or ‘rank’ is denoted by a function HðxiÞ such that
HðXSÞ ¼ 1þ HðX�XSÞ; the sole purpose of H being to distinguish
points of different ranks and the actual returned value being a mat-
ter of choice.

Fig. 1 visualizes two common systems with different hierarchy
sizes. Keeping in mind that in an interface network in
D-dimensional space there exist in general objects of dimensional-
ity d ¼ 0;1; . . . ;D� 1, we define the rank function HðxiÞ � D � d,
where d corresponds to the lowest-dimensional object in the
network to which xi belongs. For example, a triple point in a
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