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a b s t r a c t

In this paper, an alpha finite element method (aFEM) is formulated to study the propagation of elastic
waves in periodic crystals. Using the simple triangular elements, the aFEM with optimal a value can
always provide the exact solutions in the prediction of the band gap of phononic crystals. In addition,
the upper and lower solutions are always observed in the computation of the band gap of phononic crys-
tals with the adjustment of a value. The performance of aFEM is compared with standard finite element
method (FEM) with different types of mass matrix formulation. The numerical examples have strongly
demonstrated that the aFEM has given more accuracy prediction in the analysis of phononic crystals
compared with standard FEM.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Recently, a great deal of research has been devoted to the anal-
ysis of elastic wave in the phononic crystals with properties that
are not normally found in nature [1]. With periodic variation in
the density, elastic properties and structure, phononic crystals
can exhibit pass or forbidden bands in their acoustic transmission
spectrum, which leads to many practical applications of phononic
crystals such as acoustic waveguides, sound and vibration isola-
tors, and mechanical filters [2–5]. The band gaps in the phononic
crystals is originated from Bragg reflections. In this case, the shield-
ing for low frequency sound and vibration environment needs very
large structures [1], which limits the application of phononic
crystals.

Different from the Bragg type, the localized resonance of phono-
nic crystals has demonstrated that the size of the periodic constant
could be much smaller than the wavelength of the wave at the low
frequency band gap [6,7]. The localized resonance of phononic
crystals is firstly discovered by Liu et al. [8], who fabricated sonic
crystals consisting of a soft material, a matrix, and a dense material
[9] based on the idea of localized resonant structures. Lured by the
excellent features of localized resonance of phononic crystals,
various phononic crystals and their unique properties that are
not observed in natural materials have been extensively explored

and studied recently [4,10–13]. Their different microstructures
with two or more constituents enable to achieve desirable proper-
ties in a way of multi-functionality and lightweight [14–17].

The further development in seeking new designs and applica-
tions of periodic phononic crystals needs an efficient, accurate
and stable numerical methods. Some theoretical methods based
on the plane-wave expansion (PWE) are employed to study the
elastic wave of phononic crystals [18]. However, PWE may have
some difficulties in dealing with phononic crystals with a large
contrast in their elastic properties [19]. In addition, PWE has some
inherent drawback in the case of lattice having a linear or point
defect or a finite period lattice considered [20]. For these reasons,
Finite Difference Time Domain (FDTD) is developed to overcome
the disadvantages of PWE. Although FDTD offers tremendous
insights on the phonon dispersion relations as well as transmission
spectra [21], the treatment of boundary with complicated geome-
try is a bottleneck for the application of FDTD. Following this,
Wang et al. [19] developed a lumped mass (LM) method based
on FEM formulation to compute the band gap of phononic crystals.
Compared with FDTD, LM shows some advantages in terms of con-
vergence rate and computational efficiency.

It is well-known that the standard finite element method (FEM)
suffer from the ‘‘overly-stiff” problem due to the use of compatible
strain [22], which generally causes a significant loss of accuracy in
the numerical results. This is particularly true for wave propaga-
tion problems, in which the overly-stiff stiffness causes the com-
puted waves to propagate with artificially higher speeds than the
actual ones in the media. This kind of dispersion error could be
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worse in the high frequency model [23,24], which leads to the poor
prediction of elastic wave in the phononic crystals. Therefore, one
possible improvement of solution is to soften the stiffness of the
discretized model [25–28].

In this work, we present an efficient alpha finite element
method (aFEM) [29,30] to further improve the predication of band
gap of phononic crystals. The formulation of aFEM combines the
overly-stiff FEMmodel and overly-soft node-based smoothed finite
element method (NS-FEM) [26,31,32] with a parameter a. Com-
pared with overly-stiff FEM, aFEM is a softened model that has a
close to exact stiffness [33]. Thus, the accuracy from aFEM is much
better than the standard FEM using the same number of triangular
elements. Furthermore, there are several important properties in
aFEM model. Firstly, the upper and lower bound solutions of the
band gap generated by the overly-soft of the NS-FEM and overly-
stiff of FEM [29] can be obtained with adjustment of a value, which
is extremely important to estimate the exact solution using coarse
mesh for designing phononic crystals. Secondly, with optimal a
value, the exact solution of the band gap can be obtained. This is
fantastic in the process of design of phononic crystals. Thirdly,
the aFEM predicts more accurate solutions in comparison with
standard FEM. In addition, the implementation of aFEM is very
straightforward without changing FEM code too much.

The main goal of this paper is to present an efficient, stable and
accurate algorithm to compute the stop band of phononic crystals.
The detailed numerical results are provided to demonstrate the
advantages of our proposed numerical scheme. Hopefully this
advanced formulation of aFEM could be extended to solve more
complicated problems in phononic crystals. The paper is outlined
as follows. The brief introduction of elastic wave in the phononic
crystals is described in Section 2. Section 3 discusses the formula-
tion of aFEM. The numerical results are elaborated in Section 4.
The conclusions are made in Section 5.

2. Band gap in phononic crystals

The governing equation of elastic wave in the isotropic media is
described as follows:
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where r denotes the stress, u stands for the displacement vector, q
represents the density and F is the force.

The constitutive relationship for isotropic linear elasticity is
expressed as follows:

r ¼ De ð2Þ
where D is a fourth order tensor made up of Poisson’s ratio and
Young’s modulus. The strain is given by:
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The matrix of material constants D can be expressed with shear and
bulk modulus.
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where

l ¼ E
ð1þ 2vÞ k ¼ vE
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where l and k represent the shear and bulk modulus respectively, m
is the Poisson’s ratio, and E is the Young’s modulus.

A time harmonic form that is represented by a sine function as
in equation:

u ¼ u0 sinxt ð6Þ
where x is the angular frequency of mechanical motion.

lr2uþ ðkþ lÞrðr � uÞ ¼ �qx2u ð7Þ
Using standard Galerkin procedure with triangular element, Eq. (1)
can be written in the matrix form:

½K�x2M�u ¼ F ð8Þ
where

K ¼
Z
X
BTDBdX stiffness matrix ð9Þ

M ¼
Z
Xe
qNTNdX mass matrix ð10Þ

In the standard FEM, the formulation of stiffness is obtained
using compatible strain, leading to overly-stiff property of dis-
cretized model. In this work, the smoothed strain is introduced
in the stiffness, which is elaborated in Section 3.

After assembly the stiffness and mass matrix, the implementa-
tion of boundary condition is an important step to compute the
band gap of phononic crystals. It is noted that this step is exactly
the same as standard FEM in the formulation of aFEM. According
to Bloch’s theorem, the relationships between the displacements,
u and force F are obtained [34]:

ur ¼ eikxaul; ut ¼ eikyaub

urb ¼ eikxaulb; urt ¼ eiðkxþkyÞaulb; ult ¼ eikyaulb

Fr ¼ �eikxaFl; Ft ¼ �eikyaFb

Frt þ eikxaFlt þ eikyaFrb þ eiðkxþkyÞaFlb ¼ 0

ð11Þ

As outlined in Fig. 1(a), the left, right, bottom, top, and internal
nodes of displacements are represented by ul, ur , ub, ut and ui

respectively. The double subscripts denote the corner nodes of
displacements.

Consequently, the following transformation can be defined as
follows:
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Fig. 1. Node-based smoothing domain.
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