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a b s t r a c t

A new computational technique for modeling dislocation interactions with shearable and non-shearable
precipitates within the line dislocation dynamics framework is presented. While shearable precipitates
are modeled by defining a resistance function, non-shearable ones are modeled by drawing a comparison
between the two well-known Orowan and Frank–Read mechanisms. The precipitates are modeled
directly within the dislocation dynamics analysis without the need for any additional numerical methods.
Due to low computational cost the method is appropriate for simulation of a high dislocation density
interacting with large number of precipitates considering different types and various sizes and resis-
tances. It is also efficient for coupling dislocation dynamics with finite element method in multi-scale
frameworks since it does not require the mesh to be consistent with the precipitates geometry.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Computational approaches to study dislocation–precipitate
interaction, commenced from 60s, have provided more insight in
understanding plasticity of metals and alloys [1]. A comprehensive
review of classical simulation methods can be found in [2]. Since
the advent of the dislocation dynamics (DD), which is a computa-
tional framework to analyze dislocation motions and their related
phenomena at micron scale [3–7], some attempts have been made
to study dislocation interactions with precipitates and boundaries
within the dislocation dynamics analysis [8–10]. For a comprehen-
sive review of advances in dislocation dynamics modeling, see [11].

Modeling precipitates in dislocation dynamics analysis was
generally limited to specific assumptions for the stress fields
arising from precipitates. In some studies, precipitates were intro-
duced as spherical stress fields [12–18], while some others evalu-
ated the stress field due to matrix and precipitate shear modulus
difference by applying the superposition principle, in which the
problem was disintegrated into two problems: an infinite domain
containing dislocations and a correction problem for considering
the elastic field of precipitate and treating the boundary condi-
tions. As a result, an extra numerical method, such as FEM or
BEM, was required for analysis of the second part [19–21]. The

stress fields due to lattice misfit at internal boundaries were taken
into account in a few studies or by coupling DD with FEM [12,22]
or with the fast Fourier transform (FFT) [23].

The abovementioned approaches suffer from one or several
flaws in terms of physics or disadvantages with reference to com-
putational cost or both. First, the effect of misfit dislocations was
not considered in some methodologies, though it had a significant
role in dislocation–precipitate interaction. For instance, a disloca-
tion could pass a precipitate with the similar shear modulus of
matrix without any interactions. This was in contrast with real
problems where dislocations might stop behind the precipitate
or hardly pass through it because of misfit dislocations at the
coherent precipitate–metal matrix interface. Second, due to the
high stress gradient near precipitates, considerable time was
required to obtain a converged solution for the dislocation motion
near precipitates. Third, even after forming the Orowan loops, the
associated nodes still remained in the mobility equations, increas-
ing the computational effort required to solve the mobility equa-
tions at each time step. Finally, an extra numerical method such
as FEM, BEM or FFT was required to analyze the stress field of a
precipitate. In a number of studies [12–18], the extra numerical
method was avoided by defining precipitates as spherical stress
fields; however, the first three disadvantages remained unsolved.

In the present study, a computational technique is proposed to
model precipitates with various sizes and resistances within the
line dislocation dynamics analysis which eliminates the mentioned
drawbacks. The developed method is also efficient for modeling
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precipitates in a combined FEM-DD framework to address plastic
deformations in small scales. Implementation of this technique in
FEM-DD framework allows for the independency of mesh genera-
tion from the precipitates geometry, which simplifies the solution
of large systems with random distribution of precipitates by adopt-
ing very simple mesh generations, less degrees of freedom (DOFs)
and low computational costs.

2. Modeling approach

In this study, a modified version of line dislocation dynamics
(DD) simulation code, DDLab, is adopted to model dislocation
motions [24]. In dislocation dynamics simulations, a dislocation
curve is discretized into straight segments defined by two end
nodes. The mobility function M relates the vector of nodal forces
fi to the nodal velocities vi,

vi ¼ Mðf iÞ ð1Þ
The velocity of the node i, vi, also relies on the forces acting on

the other nodes. The dislocation segment orientation and material
properties are the main influential factors on the mobility function.
In the dislocation dynamics procedure, the nodal velocity is calcu-
lated by solving the mobility equations and the dislocation motion
is computed via topological considerations [25].

When a dislocation encounters a precipitate, it bends so the
related shear stress which the dislocation exerts on a precipitate
increases. If this stress reaches a critical value, the dislocation goes
on the verge of passing the precipitate. At this point, the disloca-
tion can pass the precipitate by two mechanisms relying on the
precipitate resistance, sobs, which is defined as the minimum
required shear stress to cut a precipitate. First, the dislocation
rounds the precipitate (the Orowan mechanism) unless the arising
stress from the dislocation bending overcomes the precipitate
resistance. Second, the dislocation cuts through the precipitates if
the precipitate resistance is lower than the induced stress due to
the dislocation bending. It is worth emphasizing that the applied
stress to the dislocation must be large enough to bend the disloca-
tion to a critical state in order to pass a precipitate.

To model the first mechanism (non-shearable precipitates), it is
considered that a dislocation node which locates closer than a
specific distance to a precipitate gets locked, as depicted in Fig. 1.
By this approach, the main problem of dislocation–precipitate
interaction is transformed into the Frank–Read mechanism, since
the dislocation line pinned between two precipitates behaves sim-
ilar to a Frank–Read source. The critical resolved shear stress
(CRSS) obtained from the Frank–Read and the Orowanmechanisms
depends on the maximum dislocation line curvature and the
material properties. Therefore, for an identical material, the two
mechanisms predict the equal CRSS for a given dislocation line
curvature. Assuming a constant curvature along the bowing dislo-
cation line results in snuc = lb/Lf, where l is the shear modulus, b is

the magnitude of the Burgers vector and Lf is the length of the ini-
tial dislocation line. If the anisotropic line tension is considered,
the dislocation line at the critical state will have an oval shape
[26]. The critical stress is expressed in a general form snuc = blb/
Lf by adopting the concept of self-stress [27] to investigate the
bowing of dislocation line [28]. The constant b depends on the
Poisson’s ratio, the dislocation core radius and the dislocation line
properties.

For the critical stress of two mechanisms to be equal, it is
assumed that a dislocation rounds a precipitate with a modeling
diameter D1, which is not equal to the precipitate diameter D.
Having equivalent Frank–Read nucleation stress and Orowan stress
sOrowan ¼ lb lnð�D=r0Þ=ð2pLÞ, the modeling diameter of a precipitate
can now be determined (see Fig. 1):

Lf ¼ Lþ D� D1 ð2Þ

D1 ¼ Lþ D� 2pLb ln �D=r0
� �� ��1 ð3Þ

where L is the internal distance between the two precipitates, r0 is

the core radius of dislocation and �D ¼ D�1 þ L�1
� ��1

.

The maximum stress that a dislocation can exert on a precipi-
tate occurs when the dislocation radius of curvature equals the
modeling radius, smax = lb/D1. Whenever the precipitate resistance
reaches to this magnitude (i.e. sobs = smax), the dislocation stops
behind the precipitate completely, representing the Orowan
regime. If the precipitate resistance is lower than the maximum
stress (i.e. sobs < smax), the dislocation can pass the precipitate by
exerting a lower level of stress to the precipitate, which generates
a radius of curvature larger than the modeling radius.

To keep up with the second mechanism (i.e. shearable precipi-
tates), the precipitate resistance scale, R = sobs/smax, is defined;
which is set to 1 for a non-shearable precipitate and 0 when no
precipitate exists. When the distance of a node from the center
of a precipitate is less than the modeling radius, the node gets
locked in the dislocation dynamics procedure. At each step, the
local shear stress, which is related to the local curvature at this
point, is compared with the precipitate resistance. If the related
local shear stress exceeds the precipitate resistance, the node is
released.

The precipitate resistance arises from several factors including
the matrix and precipitate shear modulus difference, misfit
dislocations and strains and the dislocation core energy change
due to the difference between crystalline structures of matrix
and precipitates. While the first factor is usually considered in
modeling precipitates in dislocation dynamics, the second and
third ones have a controlling effect. Small scale analyses are
required to determine the precipitate resistance in a matrix. Some
attempts have been made to introduce the critical resolved shear
stress, sc, as a function of shear modulus difference between the

Fig. 1. Nodes which are positioned closer than a specific distance to the precipitate get locked. The circles and crosses represent the free and locked nodes, respectively. A
dislocation line between two precipitates with the internal distance L acts as a Frank–Read source with length Lf.w is the angle between the dislocation tangents at both sides
of the precipitate.
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