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a b s t r a c t

In this paper we obtain approximate solutions to the Cluster Variation free energy by carrying out a
cluster expansion of the probabilities appearing in the free energy functional in terms of
concentration-dependent basis functions, and by truncating the expansion at different cluster levels prior
to minimization. We show that a significant improvement over the Bragg–Williams approximation can
be achieved by truncating the expansion of the cluster probabilities at relatively small clusters, thus
dramatically reducing the number of equations that need to be solved in order to minimize the free
energy. Furthermore, the free energy functional in the Cluster Variation Method offers a well-
controlled case study to infer the effects of truncating the expansion of the energy of alloy formation
in the commonly used Cluster Expansion method, versus the effects of truncating the expansion when
using a concentration-dependent basis. Examples of the approach are given for simple Ising models for
fcc- and bcc-based prototype alloy systems.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Since its inception by Kikuchi in 1951, the Cluster Variation
Method (CVM) has been widely used to accurately account for
the effect of short-range order in the free energy of binary and mul-
ticomponent alloys [1]. While the accuracy of the CVM generally
increases with the size of the largest cluster included in the
approximation, so does the computational effort involved in the
minimization of the free energy functional. With increasing cluster
sizes, the minimization needs to be carried out with respect to a
relatively large number of configurational variables, a number that
grows exponentially with cluster size. Within mean-field theories,
at the other extreme of computational convenience is the com-
monly used Bragg–Williams approximation. While a significant
body of research and applications have shown that the shortcom-
ings of the Bragg–Williams approximation can be compensated
with other terms in the configurational free energy, it is apparent
that the use of increasingly accurate ab initio methods to calculate
energies of formations calls for a similar increase in the accuracy of
the configurational entropy.

A central task in the configurational theory of alloys is the
description of functions of configurations in terms of a complete

set of configurational variables. A widely used approach to describe
functions of configuration, formalized by Sanchez et al. [2], is the
so-called Cluster Expansion (CE) method in which the functions
are expanded in terms of pair and multisite correlation functions.
These correlation functions form a complete and orthonormal basis
in configurational space [2]. Subsequently, it was shown that the
complete and orthonormal basis set introduced in Ref. [2], which
will be referred here as the SDG basis, is a particular case of an infi-
nite number of closely related complete and orthonormal basis sets
in configurational space [3,4].

Presently, the CE in the SDG basis is the method of choice to
obtain effective cluster interactions from the energies of a set of
ordered compounds, which are typically calculated by means of
some implementation of Kohn–Sham equations in Density Func-
tional Theory. The approach is particularly appealing since, for
the case of the energy of alloy formation, and after truncating the
expansion at some maximum cluster size, the method casts the
energy in the form of an Ising-like model with constant expansion
coefficients. Such expansion coefficients are commonly referred to
as Effective Cluster Interactions (ECIs). However, and despite the
unquestionable success of the CE method in the SDG basis for
the parametrization of the energy of alloy formation, the validity
of truncating the expansion remains, at least at a fundamental
level, an unresolved issue. In particular, if the energy has a non-
linear dependence in the concentration of the alloy, like it is the

http://dx.doi.org/10.1016/j.commatsci.2016.05.035
0927-0256/� 2016 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: jsanchez@austin.utexas.edu (J.M. Sanchez).

Computational Materials Science 122 (2016) 301–306

Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier .com/locate /commatsci

http://crossmark.crossref.org/dialog/?doi=10.1016/j.commatsci.2016.05.035&domain=pdf
http://dx.doi.org/10.1016/j.commatsci.2016.05.035
mailto:jsanchez@austin.utexas.edu
http://dx.doi.org/10.1016/j.commatsci.2016.05.035
http://www.sciencedirect.com/science/journal/09270256
http://www.elsevier.com/locate/commatsci


case for a regular solution model or for Fridel’s square band model
for transition metal alloys, it is straightforward to show that the CE
in the SDG basis does not converge [4].

The existence of an infinite number of basis sets provides a
straightforward path to address non-linear concentration depen-
dences in the energy of the system [3,4]. The method consists in
matching the basis sets to the overall concentration of the alloy
under consideration, and is akin to doing the expansion in a canon-
ical ensemble as first proposed by Asta et al. [5]. This particular
implementation of the cluster expansion will be referred as the
Variable Basis Cluster Expansion (VBCE) [4]. Unlike the expansion
in the SDG basis, the ECIs in the VBCE are concentration dependent.

Although most current applications of the CE method are aimed
at characterizing the energy of alloy formation, the method was
initially motivated by the need to develop efficient algorithms to
minimize the CVM free energy functional [7]. Such early studies
were aimed at the calculation of prototype alloy phase diagrams
based on Ising-like models for the description of the energy of for-
mation, and on the CVM for the treatment of the configurational
entropy [7–10]. The approach adopted in these early studies was
to describe the probabilities appearing in the CVM configurational
entropy in terms of a cluster expansion using the SDG basis func-
tions, the expectation values of which are the so-called correlation
functions. Since for a given cluster approximation the correlation
functions form a complete and orthogonal basis set, they naturally
constitute a full set of independent variables for the free energy
minimization. In this paper we formulate the minimization of the
CVM free energy in terms of a VBCE of the cluster probabilities,
and show the effects of truncating the expansion at different clus-
ter levels. In particular, the CVM free energy functional offers a
well-controlled case study to investigate the truncation of the CE
in the SDG basis versus the truncation of the CE in the Variable
Basis. Our main result, to be presented in the following sections,
is that truncating the CE of the probabilities in the SDG basis leads
to large errors in the CVM free energy as we move away from the
50/50 concentration and, eventually, leads to negative values of the
probability distributions. On the other hand, truncation of the CE in
the Variable Basis gives a sequence of free energies that converge
uniformly towards the full CVM free energy.

The organization of the paper is as follows: we begin with a
review of the CVM in Section 2 and place the emphasis on the
expansion of the cluster probabilities in the different basis sets.
An explicit example of how to connect the CE in the SDG basis with
the expansion in the Variable Basis is presented in Section 3 for the
tetrahedron approximation in the fcc lattice. We also present
examples of approximate solutions to the standard Ising model
for several CVM approximation in the fcc and bcc lattices. We con-
clude in Section 4 with a summary and observations on the pro-
posed set of approximate solutions to the CVM free energy.

2. The cluster variation method

The CVM, based on the variational principle of classical statisti-
cal mechanics, provides approximations to the exact configura-
tional free energy functional in terms of a cumulant expansion of
cluster entropies [1,11–13]. The general form of the CVM free
energy functional is:

FðfXggÞ ¼ hEi � kBT
X
g
ag
X
~rg

Xgð~rgÞ log Xgð~rgÞ
� � ð1Þ

where hEi is the expectation value of the configurational energy,
Xgð~rgÞ is the probability of observing a finite cluster of type g in
the configuration ~rg, and the ag are geometric coefficients.

As mentioned in the Introduction, the energy of the alloy can
always be expanded in any one of an infinite number of complete

and orthonormal basis sets. The basis functions in question are
given by [3,4]:

U x
að~rÞ ¼

Y
p2a

ðrp � xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p ð2Þ

where a ¼ fg;p; mg stands for a cluster of type g, with its center of
mass located at point p in the lattice, and where m labels all distinct
orientations of the cluster obtained by applying the symmetry oper-
ations of the point group of the lattice.

For a given value of x in Eq. (2), the scalar product of two func-
tions of configuration is defined as:

hf ; gix ¼
X
~r

elhri

2 coshðlÞ
� �N

f ð~rÞgð~rÞ: ð3Þ

with l such that tanhðlÞ ¼ x and with hri the point correlation
given by:

hri ¼ 1
N

XN
p¼1

rp ð4Þ

It follows from the completeness of the basis functions fU x
ag, that

the expectation value of the energy can be written as:

hEi ¼
X
g
xgJgðxÞzx

g ð5Þ

where xg is the number of clusters of type g per lattice point, zx
g is

the expectation value of the basis function U x
g , and JgðxÞ is the ECI

for cluster g obtained by projecting the energy E onto the basis
function U x

g [3,4].
Fom Eqs. (2) and (3) we see that a choice of a fixed basis with a

value of x ¼ 0 corresponds to the commonly used SDG basis. On the
other hand, in the VBCE, we use, for each configuration ~r, a basis
such that x ¼ hri.

Several methods [1,11–13] have been developed to calculate
the coefficients ag, with the approach introduced by Barker [11]
being perhaps the simplest. In Barkers’s approach, one starts by
selecting a maximum cluster, or clusters, to be used in the approx-
imation, say g0. The coefficient for the maximum cluster ag0 equals
the number of clusters of type g0 per lattice point, i.e. ag0 ¼ xg0 .
The remaining coefficients for clusters g � g0 are given by the fol-
lowing recursive formula:

ag ¼ xg �
X
g0�g

Mg0
g ag0 ð6Þ

where Mg0
g stands for the number of cluster of type g contained in a

cluster of type g0.
The main computational task in implementations of the CVM is

the minimization of the free energy functional, Eq. (1), with respect
to the cluster probabilities Xgð~rgÞ. In order to facilitate the mini-
mization step, it is convenient to introduce a set of independent
variables to describe all the cluster probabilities involved in a given
CVM approximation. Such full set of independent variables can be
identified quite straightforwardly by cluster expanding the proba-
bility distributions Xgð~rgÞ. As mentioned in the Introduction, the
CE method was initially developed to expand the cluster probabil-
ities in terms of the expectation values of the correlation functions
in the SDG basis [7]. In such a basis, the expansion is:

Xgð~rgÞ ¼
X

ag0 #ag

hXg;/
0
ag0

i0/0
ag0

ð~rg0 Þ ð7Þ

with the coefficients hXg;/
0
ag0

i0 taking a particularly simple form

[7]:
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